ON THE PRIME IDEAL DIVISORS OF $(a^n - b^n)$

Edward H. Grossman

Let *a* and *b* denote nonzero elements of the ring of integers O_K of an algebraic number field *K*, such that ab^{-1} is not a root of unity and the principal ideals (*a*) and (*b*) are relatively prime.

DEFINITION 1. A prime ideal \mathfrak{p} is called a *primitive prime* divisor of $(a^n - b^n)$ if $\mathfrak{p}|(a^n - b^n)$ and $\mathfrak{p} \nmid (a^k - b^k)$ for k < n.

DEFINITION 2. An integer *n* is called *exceptional for* $\{a, b\}$ if $(a^n - b^n)$ has no primitive prime divisors.

The set of integers exceptional for $\{a, b\}$ is denoted by E(a, b). Using recent deep results of Baker, Schinzel [4] has proved that if $n > n_0(l)$ then $n \notin E(a, b)$, where l = [K : Q] and n_0 is an effectively computable integer. In particular card $E(a, b) \le n_0$. In this paper, using only elementary methods, upper bounds are obtained for card $\{n \in E(a, b) : n \le x\}$ which are independent of a and b.

1. Introduction. The prime divisors of the sequence of rational integers $x_n = a^n - b^n$ have been studied by Birkhoff and Vandiver. They showed [1, p. 177] that if a and b are positive and relatively prime, then for n > 6 there is a prime p which divides $a^n - b^n$ and does not divide $a^k - b^k$ for k < n. Postnikova and Schinzel [3] have investigated analogues of this result for the ring of integers O_K of an algebraic number field K.

To fix our notation and terminology, a and b will always denote nonzero elements of O_K such that ab^{-1} is not a root of unity, and the principal ideals (a) and (b) are relatively prime. Note then that all the ideals $(a^n - b^n)$ are nonzero.

DEFINITION 1. A prime ideal \mathfrak{p} is called a *primitive prime divisor of* $(a^n - b^n)$ if $\mathfrak{p}|(a^n - b^n)$ and $\mathfrak{p}|(a^k - b^k)$ for k < n.

DEFINITION 2. An integer *n* is called *exceptional for* $\{a, b\}$ if $(a^n - b^n)$ has no primitive prime divisors.

The set of integers exceptional for $\{a, b\}$ is denoted by E(a, b). Using a theorem of Gelfond it can be shown [3, p. 172] that card $(E(a, b)) < n_0(a, b)$. Recently, using deep methods, Baker [4] has improved Gelfond's theorem, and has shown that card $E(a, b) < n_0(l)$, where l = [K : Q]. In this paper we obtain by elementary methods upper bounds for card $\{n \in E(a, b) : n \le x\}$ which are independent of a and b. To state our theorem precisely we