CLOSURE THEOREMS FOR AFFINE TRANSFORMATION GROUPS

R. P. GOSSELIN

Let *W* **be a closed subgroup of the group of linear transfor mations of** *Rⁿ* **onto itself. Let** *hx* **denote the image of the point** *x* **under the transformation h, and let** \mathcal{S} be the transpose group of *W***: i.e. its elements are associated with matrices which are the** *transposes of those in* \mathcal{H} *. For f in* $L^2(R_n)$ *, let* $Cl \{f; \mathcal{H} \times R_n\}$ denote the closure in the L^2 norm of the linear span of functions of **the form** $f(hx + t)$ **where h is in** \mathcal{H} , and t is in R_n . Since this **space is translation-invariant, it is of the form** *L² (S):* **i.e. the set of** L^2 functions $r(x)$ such that the nonzero set of \hat{r} , the Fourier **transform of r, is, except for a set of measure zero, included in 5. In** the first theorem a precise description of S is given, and in the **second, a function is constructed in a natural way whose translates alone generate the given space.**

S is roughly the orbit of $N(f)$, the nonzero set of \hat{f} , under the group \mathcal{S} :

$$
\bigcup_{g \text{ in } \mathscr{G}} g(N(f)) = \mathscr{G}(N(f)) .
$$

However a difficulty arises in that *N(f)* is determined only to within a set of measure zero, and \mathscr{I} may transform sets of measure zero into nonmeasurable sets. For example, when the rotation group of the plane acts on a nonmeasurable linear set (of the x-axis, say), a nonmeasurable planar set results. Hence some care is required in defining *S*. Let E_f denote the set of points of density (one) of $N(f)$. Since the exceptional set of $N(f)$ has measure zero, every point of E_f has density one with respect to E_f . The orbit of the set E_f under the group $\mathscr S$ will be used as S, and as part of our first theorem, it will be shown that *S* is measurable.*

The fact that closed translation-invariant subspaces of L^2 are of the form $L^2(\hat{S})$ is due to L. Schwartz [3]. The characterization of $Cl(f; \mathcal{H} \times$ *Rn }* in Theorem 1 reduces to the familiar Wiener theorem when *W* consists only of the identity and has been proved by S. R. Harasymiv for *If* spaces and for general distribution spaces [1, 2] when *%f* is the diagonal group. The second theorem involves the construction of a function p , arising naturally from f by an integration over $\mathscr S$, such that the translates of p generate the same space: i.e. such that $Cl{p; R_n} = Cl{f; \mathcal{H} \times R_n}$.