CLOSURE THEOREMS FOR AFFINE TRANSFORMATION GROUPS

R. P. Gosselin

Let \mathscr{H} be a closed subgroup of the group of linear transformations of R_n onto itself. Let hx denote the image of the point x under the transformation h, and let \mathscr{G} be the transpose group of \mathscr{H} : i.e. its elements are associated with matrices which are the transposes of those in \mathscr{H} . For f in $L^2(R_n)$, let $Cl\{f; \mathscr{H} \times R_n\}$ denote the closure in the L^2 norm of the linear span of functions of the form f(hx+t) where h is in \mathscr{H} , and t is in R_n . Since this space is translation-invariant, it is of the form $L^2(S)$: i.e. the set of L^2 functions r(x) such that the nonzero set of \hat{r} , the Fourier transform of r, is, except for a set of measure zero, included in S. In the first theorem a precise description of S is given, and in the second, a function is constructed in a natural way whose translates alone generate the given space.

S is roughly the orbit of N(f), the nonzero set of \hat{f} , under the group \mathcal{G} :

$$\bigcup_{g \text{ in } \mathscr{G}} g(N(f)) = \mathscr{G}(N(f)).$$

However a difficulty arises in that N(f) is determined only to within a set of measure zero, and \mathscr{G} may transform sets of measure zero into nonmeasurable sets. For example, when the rotation group of the plane acts on a nonmeasurable linear set (of the x-axis, say), a nonmeasurable planar set results. Hence some care is required in defining S. Let E_f denote the set of points of density (one) of N(f). Since the exceptional set of N(f) has measure zero, every point of E_f has density one with respect to E_f . The orbit of the set E_f under the group $\mathscr G$ will be used as S, and as part of our first theorem, it will be shown that S is measurable.

The fact that closed translation-invariant subspaces of L^2 are of the form $L^2(\hat{S})$ is due to L. Schwartz [3]. The characterization of $Cl\{f; \mathcal{H} \times R_n\}$ in Theorem 1 reduces to the familiar Wiener theorem when \mathcal{H} consists only of the identity and has been proved by S. R. Harasymiv for L^p spaces and for general distribution spaces [1, 2] when \mathcal{H} is the diagonal group. The second theorem involves the construction of a function p, arising naturally from f by an integration over \mathcal{G} , such that the translates of p generate the same space: i.e. such that $Cl\{p; R_n\} = Cl\{f; \mathcal{H} \times R_n\}$.