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COVERING THEOREMS FOR FINITE NONABELIAN
SIMPLE GROUPS. V.

J. L. BRENNER, R. M. CRANWELL, AND J. RIDDELL

In the alternating group An, n = 4k + 1 > 5, the class C of
the cycle (12- n) has the property that CC covers the
group. For n = 16k there is a class C of period n/4 in An such
that CC covers An C is the class of type (4k)4.

1. Introduction. It was shown by E. Bertram [1] that for
n ^ 5 every permutation in An is the product of two /-cycles, for any /
satisfying [in /4] g / ^ n. Hence An can be covered by products of two
n-cycles and also by products of two (n — l)-cycles. But if n is odd the
n -cycles in An fall into two conjugate classes C, C, and similarly for the
(n — l)-cycles if n is even, so that the quoted result does not decide
whether

(1) CC = An.

The question was decided affirmatively for n = 4k + 2 and negatively
for n = 4k, 4k - 1 in [2]. The question is now decided affirmatively in
the remaining case n = 4k + 1, n^ 5.

THEOREM 1. For n = 4k + 1 > 5, the class C of the cycle (12 n)
has property (1).

The proof is in §§2-4.

Regarding the product CC, it was shown in [2] that CC covers
An (n ^ 5) if n = 4k, 4k-I, while if n = 4k + 1, 4k + 2, CC contains all
of An but the identity.

By an argument quite similar to the proof of Theorem 1, we have
proved

THEOREM 2. For n = 16/c, the class C of type (4k)4 in An has
property (1).

The proof and some related matters are discussed in §5. Note that
the class in Theorem 2 has period n/4.

2. The case n = 9. Let a = (123456789). For every class in
A9, a conjugate b of a can be found such that ab represents (lies in) that
class. This assertion is the substance of the table below.
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