RADICALS OF SUPPLEMENTARY SEMILATTICE SUMS OF ASSOCIATIVE RINGS

B. J. GARDNER

This paper deals with the effect of radicals (in the Kurosh-Amitsur sense) on supplementary semilattice sums of rings as defined by J. Weissglass (Proc. Amer. Math. Soc., 39 (1973), 471–473). It is shown that if \mathcal{R} is a strict, hereditary radical class, then $\mathcal{R}(R) = \sum_{\alpha \in \Omega} \mathcal{R}(R_{\alpha})$ for every supplementary semilattice sum $R = \sum_{\alpha \in \Omega} R_{\alpha}$ with finite Ω . If \mathcal{R} is an A-radical class or the generalized nil radical class, the same conclusion holds with the finiteness restriction removed. On the other hand, if $\mathcal{R}(\sum_{\alpha \in \Omega} R_{\alpha}) = \sum_{\alpha \in \Omega} \mathcal{R}(R_{\alpha})$ for all finite Ω , then \mathcal{R} is strict and satisfies

(*) $R \in \mathcal{R} \Rightarrow$ the zeroring on the additive group of R belongs to \mathcal{R} ,

a condition satisfied by both hereditary strict and A-radical classes.

Introduction. Semilattice sums of rings were introduced by Weissglass [11]. Let Ω be a semilattice, a commutative semigroup in which all elements are idempotent. A ring $R = \sum_{\alpha \in \Omega} R_{\alpha}$ is a supplementary semilattice sum of its subrings R_{α} if (i) $R^+ = \bigoplus_{\alpha \in \Omega} R^+_{\alpha}$ (here ()⁺ denotes the additive group) i.e., R is a supplementary sum in the language of [3], and (ii) $R_{\alpha}R_{\beta} \subseteq R_{\alpha\beta}$ for all $\alpha, \beta \in \Omega$. Examples include direct sums, polynomial rings and semigroup rings over semilattices.

In [11], Weissglass considered the inheritance of properties by a supplementary semilattice sum $R = \sum_{\alpha \in \Omega} R_{\alpha}$ from its subrings R_{α} . In [8], Janeski and Weissglass proved that R is regular if and only if each R_{α} is. Their arguments need minimal modification to obtain corresponding results in which regularity is replaced by various other hereditary radical properties, including quasi-regularity, nilness and local nilpotence.

We shall be concerned with a stronger condition on a radical class $\mathscr{R}: \mathscr{R}(\Sigma_{\alpha \in \Omega} R_{\alpha}) = \Sigma_{\alpha \in \Omega} \mathscr{R}(R_{\alpha})$ (supplementary semilattice sum) for all (finite) supplementary semilattice sums $\Sigma_{\alpha \in \Omega} R_{\alpha}$.

For general information about radical classes the reader is referred to [3]. A radical class \mathcal{R} is *strict* if every \mathcal{R} -subring S of a ring R is contained in $\mathcal{R}(R)$, or equivalently every subring of an \mathcal{R} -semi-simple ring is \mathcal{R} -semi-simple. See [9] for further details. An A-radical class [5] is one which contains with any ring R all ring S with $S^+ \cong R^+$. We denote the additive group of a ring by $()^+$, the zeroring on an abelian group by $()^0$; < signifies an ideal. All rings considered are associative.