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RADICALS OF SUPPLEMENTARY SEMILATTICE SUMS
OF ASSOCIATIVE RINGS

B. J. GARDNER

This paper deals with the effect of radicals (in the Kur-
osh-Ainitsur sense) on supplementary semilattice sums of rings
as defined by J. Weissglass (Proc. Amer. Math. Soc, 39 (1973),
471-473). It is shown that if Ŝ  is a strict, hereditary radical
class, then 91 (R) = Σ α e Ω £%(#«) for every supplementary semi-
lattice sum R = Σ α G Ω £ α with finite Ω. If 91 is an A -radical
class or the generalized nil radical class, the same conclusion
holds with the finiteness restriction removed. On the other
hand, if $(Σ«e ΩjRα) = Σa&ίϊ9l(Ra) for all finite Ω, then 91 is
strict and satisfies

(*) RG91 Φ the zeroring on the additive group of R

belongs to 91,
a condition satisfied by both hereditary strict and A -radical
classes.

Introduction. Semilattice sums of rings were introduced by
Weissglass [11]. Let Ω be a semilattice, a commutative semigroup in
which all elements are idempotent. A ring R = Σ α e Ω Ra is a supplemen-
tary semilattice sum of its subrings Ra if (i) R+ = 0 a en#« (here ( )+

denotes the additive group) i.e., JR is a supplementary sum in the
language of [3], and (ii) RaRβ C Raβ for all a,βEΩ. Examples include
direct sums, polynomial rings and semigroup rings over semilattices.

In [11], Weissglass considered the inheritance of properties by a
supplementary semilattice sum R = Σ α e Ω # α from its subrings Ra. In
[8], Janeski and Weissglass proved that R is regular if and only if each
Ra is. Their arguments need minimal modification to obtain corre-
sponding results in which regularity is replaced by various other
hereditary radical properties, including quasi-regularity, nilness and
local nilpotence.

We shall be concerned with a stronger condition on a radical class
91: 2fc(ΣaeaRa) = ΣαEΩ£%(JRα) (supplementary semilattice sum) for all
(finite) supplementary semilattice sums ΣaGςχRa.

For general information about radical classes the reader is referred
to [31. A radical class 9t is strict if every £%-subring S of a ring R is
contained in 91{R), or equivalently every subring of an έ%-semi-simple
ring is 9i- semi-simple. See [9] for further details. An A-radical class
[5] is one which contains with any ring R all ring 5 with 5 + = JR*. We
denote the additive group of a ring by ( )+, the zeroring on an abelian
group by ( )°; < signifies an ideal. All rings considered are associa-
tive.
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