θ -CLOSED SUBSETS OF HAUSDORFF SPACES

R. F. DICKMAN, JR. AND JACK R. PORTER

A topological property of subspaces of a Hausdorff space, called θ -closed, is introduced and used to prove and interrelate a number of different results. A compact subspace of a Hausdorff space is θ -closed, and a θ -closed subspace of a Hausdorff space is closed. A Hausdorff space X with property that every continuous function from X into a Hausdorff space is closed is shown to have the property that every θ -continuous function from X into a Hausdorff space is closed. Those Hausdorff spaces in which the Fomin H-closed extension operator commutes with the projective cover (absolute) operator are characterized. An H-closed space is shown not to be the countable union of θ -closed nowhere dense subspaces. Also, an equivalent form of Martin's Axiom in terms of the class of H-closed spaces with the countable chain condition is given.

1. Preliminaries. For a space X and $A \subseteq X$, the θ -closure of A, denoted as $cl_{\theta} A$, is $\{x \in X: \text{ every closed neighborhood of } x \text{ meets} \}$ A}. The subset A is θ -closed if $cl_{\theta} A = A$. Similarly, the θ -interior of A, denoted as $\operatorname{int}_{\theta} A$, is $\{x \in X: \text{ some closed neighborhood of } x \text{ is }$ contained in A}. Clearly, $cl_{\theta}A$ is closed and $int_{\theta}A$ is open. The concept of θ -closure was introduced by Velicko [15] and used by the authors in [3]. Also introduced in [15] is the concept of a H-set: a subset Aof a Hausdorff space X is an H-set if every cover of A by sets open in X has a finite subfamily whose closures in X cover A; this concept was independently introduced in [11] and called *H*-closed relative to X. An open filter is a filter with a filter base consisting of open sets. A maximal open filter is called an open ultrafilter. A filter \mathcal{F} on X is said to be free if $\operatorname{ad}_x \mathcal{F} \neq \emptyset$, otherwise, \mathcal{F} is said to be fixed. A subset A of X is far from the remainder (f.f.r.) [1] in X if for every free open ultrafilter \mathscr{U} on X, there is open $U \in \mathscr{U}$ such that $\operatorname{cl}_X U \cap A = \emptyset$; a subset A of X is rigid in X [3] if for every filter base \mathscr{F} on X such that $A \cap \cap \{ cl_{\theta} F : F \in \mathscr{F} \} =$ \emptyset , there is open set U containing A and $F \in \mathscr{F}$ such that $\operatorname{cl} U \cap F =$ \varnothing . The following facts are used in the sequel:

(1.1) In $A \subseteq B \subseteq X$ and A is θ -closed in X, then A is θ -closed in B.

- (1.2) A compact subset of a Hausdorff space is θ -closed.
- (1.3) [15] A θ -closed subset of an H-closed space is an H-set.
- (1.4) [3] Let A be a subset of a space X. The following are