HOMEOMORPHISMS OF THE PLANE

BEVERLY L. BRECHNER AND R. DANIEL MAULDIN

This paper is concerned with homeomorphisms of Euclidean spaces onto themselves, with bounded orbits. The following results are obtained. (1) A homeomorphism of E^2 onto itself has both bounded orbits and an equicontinuous family of iterates iff it is a conjugate of either a rotation or a reflection; (2) An example of Bing is modified to produce a fixed point free, orientation preserving homeomorphism of E^3 onto itself, such that orbits of bounded sets are bounded; and (3) There is no homeomorphism of E^2 onto itself such that the orbit of every point is dense.

1. Introduction. One motivation for this paper is the well-known bounded orbit problem, "Does a homeomorphism T of E^2 onto itself, with bounded orbits, necessarily have a fixed point?" This is discussed in detail in §2. In our investigations we were led to a study of homeomorphisms which have bounded orbits and an equicontinuous family of iterates, and we obtained a characterization of such homeomorphisms in Theorem 4. This theorem was proved earlier by Kerékjártó [13], using different methods. Our proof of this uses ε -sequential growths and is similar to the proof of the main theorem of [8].

In § 4, we study homeomorphisms with dense orbits.

2. The bounded orbit problem. As far as we know, this problem remains unsolved: Is there a homeomorphism T of the plane onto itself such that the orbit of each point is bounded, and which does not have a fixed point? The answer is "no" if T is orientation-preserving, and this is proved in [1, Proposition 1.2].

We wish to make the following observations:

- (1) It follows from the methods of this paper that if there is a fixed point free homeomorphism T of the plane such that the orbits of bounded sets are bounded, then there is a compact continuum M in E^2 , which does not separate the plane and which is invariant under T.
- (2) If the orbits of points under T are bounded and closed, then T is periodic. This follows from [15].
- (3) If T is orientation-reversing with bounded orbits, then T^2 is orientation-preserving with bounded orbits and thus T^2 has a fixed point. However, this does not necessarily imply that T has a fixed point. In [12], Johnson has given an example of a homeo-