COMPLEX VECTOR FIELDS AND DIVISIBLE CHERN CLASSES

ROBERT D. LITTLE

This paper contains two theorems which relate the maximal number of independent sections of a complex bundle over a manifold to the Chern classes of the bundle and certain functional cohomology operations. The main theoretical result of the paper is a formula which relates the obstruction to a lifting in a fibration and a functional cohomology operation.

Introduction. Let M be a connected, closed, orientable, 1. smooth manifold of dimension 2n. If ω is a complex *n*-plane bundle over M, the complex span of ω is the maximal number of cross-sections of ω which are linearly independent over the complex numbers. In this paper, we consider the following question: when is complex span $\omega \ge q$? Hopf's theorem says that complex span $\omega > 0$ if and only if ω has vanishing Euler class and the theorems of Thomas ([10] and [11]) give an effective answer in the case q = 2. We study this problem in the cases q = 3, 4 and establish theorems which give necessary and sufficient conditions for complex span $\omega \ge q$ in terms of the Chern classes of ω and certain functional cohomology operations. The Chern class of ω in $H^{2i}(M; \mathbb{Z})$ is denoted by $c_i(\omega)$. If $\delta_p P^1$ denotes the Steenrod *p*-power P^1 followed by the Bockstein associated with reduction mod p. $\delta_n P_m^1(c(i - p))$ (p + 1)) denotes a subset of a functional operation defined on the universal Chern class c(i - p + 1) and contained in $H^{2i}(M; \mathbb{Z})$. This subset will be described in the second section of this paper. If p is a prime, M is *j*-connected mod p if $H_i(M; \mathbb{Z}_p) = 0, 1 \le i \le j$. In both theorems below, M is 1-connected mod 2 and 3.

THEOREM 1. If n is even, $n \ge 6$, then complex span $\omega \ge 3$ if and only if $c_i(\omega) = 0$, $n - 2 \le i \le n$, and $0 \in \delta Sq_{\omega}^2(c(n-2))$.

THEOREM 2. If n is odd, $n \neq 1 \pmod{3}$, $n \geq 9$, and M is 3-connected mod 2, then complex span $\omega \geq 4$ if and only if $c_i(\omega) = 0$, $n - 3 \leq i \leq n$, $0 \in \delta Sq_{\omega}^2(c(n-3))$, and $0 \in \delta_3 P_{\omega}^1(c(n-3))$.

In Theorem 1, if $n \neq 0 \pmod{3}$, and $n \equiv 2 \pmod{4}$, the connectedness hypothesis can be dropped. Thomas and Gilmore [11] show that if M is 3-connected, then for every n, complex span $\omega \ge 3$ if and only if $c_{n-2}(\omega) = 0$ and $c_n(\omega) = 0$. Gilmore [2] proves theorems similar to Theorems 1 and 2 in which he assumes that $H_2(M; \mathbb{Z})$ and $H_4(M; \mathbb{Z})$,