RATIONAL APPROXIMATION OF e^{-x} ON THE POSITIVE REAL AXIS

D. J. NEWMAN AND A. R. REDDY

In this paper we obtain error bounds to approximations of e^{-x} on $[0; \infty)$ by rational functions having zeros and poles only on the negative real axis.

Our main concern in this paper is the question of approximating e^{-x} on the positive real axis by reciprocals of polynomials and by rational functions, especially by those which have all their zeros and poles on the negative real axis.

NOTATION. Let π_n represent the set of all polynomials of degree $\leq n$. Let π_n^* represent the set of all polynomials in π_n all of whose zeros are in the left half plane and π_n^* represent the set of all polynomials in π_n^* all of whose zeros are real and negative. Similarly let $\rho_n, \rho_n^*, \rho_n^{**}$ represent the sets of rational functions of total degree *n* whose numerators and denominators are in $\pi_n, \pi_n^*, \pi_n^{**}$ respectively. Let $\| \|$ denote $\| \|_{L_{e(0,\infty)}}$. Then we define

$$\lambda_{0,n}(f) = \inf_{p \in \pi_n} \left\| f - \frac{1}{p} \right\|,$$

$$\lambda_{0,n}^*(f) = \inf_{p \in \pi_n^*} \left\| f - \frac{1}{p} \right\|,$$

$$\lambda_{0,n}^{**}(f) = \inf_{p \in \pi_n^{**}} \left\| f - \frac{1}{p} \right\|,$$

$$\lambda_n(f) = \inf_{r \in \rho_n} \left\| f - r \right\|,$$

$$\lambda_n^*(f) = \inf_{r \in \rho_n^*} \left\| f - r \right\|,$$

$$\lambda_n^{**}(f) = \inf_{r \in \rho_n^{**}} \left\| f - r \right\|.$$

LEMMA (Newman [1], Theorem 2). Let $p \in \pi_n^{**}$ where $n \ge 2$, then

$$||e^{x} - p||_{L_{\infty[0,1]}} \ge (16n+1)^{-1}.$$

We obtain the following results.

(Theorems 1, 2): $(17e^2n)^{-1} \leq \lambda ^{**}_{0,n}(e^{-x}) \leq (en)^{-1}, n \geq 2.$