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ROOTS OF THE EULER POLYNOMIALS

F. T. HOWARD

In this paper we prove some new theorems about the real
and complex roots of the Euler polynomials. For each n we show
how the real roots of En(x) are distributed in the closed interval
[1, 3]. We also show how the real roots of En(x) are distributed
in the arbitrary interval [m, m + 1] for n sufficiently large.
Finally, we prove that if a and b are nonzero rational numbers
and c is a square-free integer, then En{x) has no roots of the
form aVc, c^ 1, or a + b\/c,c even, or a + bi, a and b
integers.

1. Introduction. The Euler polynomial En(x) degree n can
be defined as the unique polynomial satisfying

(1.1)

These polynomials have been extensively studied; see [3, Chapter VI]
and [4, Chapter II] for example. The first fifteen Euler polynomials are
listed in [5, p. 477].

In this paper we are primarily concerned with the real roots of En(x),
though we also prove a few results about the complex roots. It is well
known that if n is even, n > 0, then the only real roots of En{x) in the
closed interval [0, 1] are 0 and 1, while if n is odd the only real root in
[0, 1] is 1/2. Brillhart [1] has pointed out that these are the only complex
roots in the "critical strip" of all complex numbers x + /y, 0 ^ x ^ 1. In
the same paper Brillhart proved that E5(x) is the only Euler polynomial
with a multiple root and that the Euler polynomials have no rational
roots other than 0, 1, 1/2.

The main results in this paper are:
(1) On the closed interval [1, 3] we show how the real roots of

En(x) are distributed for each n.
(2) On each interval [m, m + 1], m > 0, we show how the real roots

of En(x) are distributed for n sufficiently large.
(3) Let a and b be nonzero rational numbers and let c and d be

square-free integers. The polynomial JBn(x) has no roots of the form
aVc, (c^l) , a + bVc (c even), aVd^ b\/c i (c and d of different
parity); or a 4- bi (α, b integers).

It is pointed out that results similar to (3) are also true for the
Bernoulli polynomials.
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