NON-HAUSDORFF MULTIFUNCTION GENERALIZATION OF THE KELLEY-MORSE ASCOLI THEOREM

GEOFFREY FOX AND PEDRO MORALES

The paper generalizes the Kelley-Morse theorem to continu ous point-compact multifunction context. The generalization, which is non-Hausdorff, contains the Ascoli theorem for continu ous functions on a k_3 -space by the authors and the known **multifunction Ascoli theorems of Mancuso and of Smithson.**

1. Introduction. The Kelley-Morse theorem [3, p. 236] is central among the topological Ascoli theorems for continuous functions on a *k* -space. It generalizes to the fc³ -space theorem of **[1],** which contains all known Ascoli theorems for k -spaces or k_3 -spaces.

Obviously a multifunction generalization depends on a multifunc tion extension of "even continuity". One such extension is that of Lin and Rose **[5],** but this was not applied in Kelley-Morse context. Another which was so applied [7, p. 24] is two-fold and leads to a two-fold multifunction Kelley-Morse theorem which, however, does not contain the Mancuso theorem [6, p. 470], nor the Smithson theorem [9, p. 259]. This paper gives a natural multifunction extension of the definition and leads to a multifunction theorem containing all the above-mentioned theorems.

2. Tychonoff sets. Let X and *Y* be nonempty sets. A *multifunction* is a point to set correspondence $f: X \rightarrow Y$ such that, for all $x \in X$, fx is a nonempty subset of *Y*. For $A \subseteq X$, $B \subseteq Y$ it is customary to write $f(A) = \bigcup_{x \in A} f x$, $f^{-}(B) = \{x : x \in X \text{ and } f x \cap B \neq \emptyset\}$ and $f^{+}(B) =$ ${x : x \in X}$ and ${f x \subseteq B}$. If *Y* is a topological space, a multifunction $f: X \rightarrow Y$ is *point-compact* if fx is compact for all $x \in X$.

Let $\{Y_x\}_{x\in X}$ be a family of nonempty sets. The *m-product P* $\{Y_x : x \in Y\}$ X } of the Y_x is the set of all multifunctions $f: X \to \bigcup_{x \in X} Y_x$ such that $fx \subseteq Y_x$ for all $x \in X$. In the case $Y_x = Y$ for all $x \in X$, the *m*-product of the Y_x , denoted Y^{mx} , is the set of all multifunctions on X to Y. In particular, if Y is a topological space, the symbol $(Y^{mx})_0$ will denote the set of all point-compact members of Y^{mx} . For $x \in X$, the *x*-projection $\operatorname{pr}_x: P\{Y_x \colon x \in X\} \to Y_x$ is the multifunction defined by $\operatorname{pr}_x f = fx$. If the *Y*_{*x*} are topological spaces, the *pointwise topology* τ_p on $P\{Y_x : x \in X\}$ is defined to be the topology having as open subbase the sets of the forms $\text{pr}_{\mathfrak{x}}(U_{\mathfrak{x}})$, $\text{pr}_{\mathfrak{x}}^{\mathfrak{t}}(U_{\mathfrak{x}})$, where $U_{\mathfrak{x}}$ is open in $Y_{\mathfrak{x}}$, $\mathfrak{x} \in X$.

For $F \subseteq Y^{mx}$, $x \in X$, we write $F[x] = \bigcup_{f \in F} f x$. Let Y be a topologi cal space. A subset *F* of Y^{mx} is *pointwise bounded* if $F[x]$ has compact