GROUP REPRESENTATIONS ON HILBERT SPACES DEFINED IN TERMS OF $\bar{\partial}_b$ -COHOMOLOGY ON THE SILOV BOUNDARY OF A SIEGEL DOMAIN

H. Rossi and M. Vergne

Let Q be a C^n -valued quadratic form on C^m . Let N(Q) be the 2-step nilpotent group defined on $R^n \times C^m$ by the group law

$$(x, u) \cdot (x', u') = (x + x' + 2 \operatorname{Im} Q(u, u'), u + u')$$
.

Then N(Q) has a faithful representation as a group of complex affine transformations of C^{n+m} as follows:

$$g \cdot (z, u) = (z + x_0) + i(2Q(u, u_0) + Q(u, u_0), u_0 + u_0)$$

where $g = (x_0, u_0)$. The orbit of the origin is the surface

 $\Sigma = \{(z, u) \in C^{n+m}; \operatorname{Im} z = Q(u, u)\}.$

This surface is of the type introduced in [11], and has an induced $\bar{\partial}_b$ -complex (as described in that paper) which is, roughly speaking, the residual part (along Σ) of the $\bar{\partial}$ -complex on C^{n+m} . Since the action of N(Q) is complex analytic, it lifts to an action on the spaces E^q of this complex which commutes with $\bar{\partial}_b$. Since the action of N(Q) is by translations, the ordinary Euclidean inner product on C^{n+m} is N(Q)invariant, and thus N(Q) acts unitarily in the L^2 -metrics on $C_0^{\infty}(E^q)$ defined by

$$|| \Sigma a_I d\bar{u}_I ||^2 = \int_{\Sigma} \Sigma |a_I|^2 dV$$

where dV is ordinary Lebesgue surface measure. In this way we obtain unitary representations ρ_q of N(Q) on the square-integrable cohomology spaces $H^q(E)$ of the induced $\bar{\partial}_b$ -complex.

These are generalizations of the so-called Fock or Segal-Bargmann representations [2, 4, 10, 13], and the representations studied by Carmona [3]. In this paper, we explicitly determine these representations and exhibit operators which intertwine the ρ_q with certain direct integrals of the Fock representations.

This is accomplished by means of a generalized Paley-Wiener theorem arising out of Fourier-Laplace transformation in the x (Re z) variable. Let us describe this result. For $\xi \in \mathbb{R}^{n_*}$, let $Q_{\xi}(u, v) = \langle \xi, Q(u, v) \rangle$. Let $H^q(\xi)$ be the square-integrable cohomology of the $\overline{\partial}$ -complex on \mathbb{C}^m relative to the norm