CLOSED ORIENTED 3-MANIFOLDS AS 3-FOLD BRANCHED COVERINGS OF S^{3} OF SPECIAL TYPE

Hugh M. Hilden, Jose M. Montesinos
And Thomas Thickstun

Abstract

It has been shown by Hilden and Montesinos independently that any closed oriented 3 -manifold M is a 3 -fold irregular branched covering of $S^{3}, p: M \rightarrow S^{3}$. The purpose of this paper is to show that the branch covering space map can be chosen in such a way that the set of points at which p fails to be a local homeomorphism is the boundary of a disc in M. One application of this result is a new proof that a closed oriented 3 -manifold is parallelizable.

1. Introduction. Let $p: X \rightarrow Y$ be a nondegenerate simplical map between compact triangulated combinatorial n-manifolds such that $p(\partial X) \subset \partial Y$. If the restriction of p to a map of the complements of the $n-2$ skeletons is a covering space map, then $p: X \rightarrow Y$ is called a branched covering space. A point $x \in X$ is called an ordinary point if p maps some neighborhood of x homeomorphically into Y. The complement of the set of ordinary points is called the branch cover. The image of the branch cover is called the branch set.

A represented link is a polygonal link L in S^{3} together with a transitive representation ω of the link group $\pi\left(S^{3}-L\right)$ into Σ_{d}, the symmetric group on d-symbols. The representation is called simple if each meridian of L is represented by a transposition.

Given a represented link (L, ω), there is a unique closed orientable 3 -manifold, $M(L, \omega)$, determined by the representation. The manifold $M(L, \omega)$ is a d-fold branched covering space of S^{3} branched over L. A detailed description of how to construct $M(L, \omega)$ is given in [9].

If M is a compact orientable 3-manifold and $p: M \rightarrow S^{3}$ is a branched covering space such that the branch set is a link L, then $M=M(L, \omega)$ where $\omega(\gamma)$ is the permutation γ induces on the left cosets of $p_{*} \pi_{1}\left(M-p^{-1}(L)\right)$ by left multiplication.

Alexander's theorem ([1]) states that any closed orientable 3manifold is an $M(L, \omega)$ for some link L and some presentation ω. Two of the co-authors of this paper showed, in [6], [7], [4] and [5], using different methods, that any closed orientable 3-manifold is an $M(L, \omega)$, where ω is a simple representation of $\pi\left(S^{3}-L\right)$ onto Σ_{3} and L is a knot. Thus any closed orientable 3 -manifold is an irregular

