COMMUTATORS AND NUMERICAL RANGES OF POWERS OF OPERATORS

ELIAS S. W. SHIU

If 0 does not lie in the closure of the numerical range of any positive integral power of a Hilbert space operator T, then an odd power of T is normal. If, in addition, Tis convexoid, then T itself is normal; in fact, T is the direct sum of at most three rotated positive operators. A version of these results is given in terms of commutators.

1. Introduction. In [8] C. R. Johnson proved: For an $m \times m$ complex matrix A, if A^n is not normal for any positive integer n, then there exist a positive integer n_0 and a nonzero vector $x \in C^m$ such that $(A^{n_0}x, x) = 0$. Later he and M. Neuman [9] obtained a number theoretic result which strengthens the above theorem. We generalize these theorems to the Hilbert space operator case in this paper.

Let $\mathscr{B}(\mathscr{H})$ denote the set of bounded operators on a Hilbert space \mathscr{H} . For $T \in \mathscr{B}(\mathscr{H})$, $\overline{W}(T)$ denotes the closure of the numerical range of T. Our main results are: If $0 \notin \overline{W}(T^n)$, n = 1, 2, 3, \cdots , then an odd power of T is normal; in fact, T is similiar to the direct sum of at most three rotated positive operators. Moreover, under the above hypothesis, T is normal if and only if T is convexoid.

These results can be applied to the theory of commutators: Let \mathfrak{H} denote a separable infinite dimensional Hilbert space. For $T \in \mathscr{B}(\mathfrak{H})$, if $T^n \notin \{SX - XS: S, X \in \mathscr{B}(\mathfrak{H}), S \text{ positive}\}, n = 1, 2, 3, \cdots$, then there are an odd integer k and a compact operator K such that $T^k + K$ is normal; furthermore, T is a compact perturbation of a normal operator if and only if the essential numerical range of T is a polygon (possibly degenerate).

2. Preliminaries. Let C denote the set of complex numbers and \mathbb{R}^+ the set of strictly positive numbers. For $\Omega \subset \mathbb{C}$, $\operatorname{Co}(\Omega)$ denotes its convex hull; $\Omega^n = \{z^n : z \in \Omega\}$, n a positive integer. We write $\Omega > r, r$ a real number, if Ω is a real subset and each number in Ω is greater than r. Let $\alpha, \beta \in \mathbb{C}$ and $\varepsilon \in (0, 1]$, $\Theta(\alpha, \beta; \varepsilon)$ denotes the closed elliptical disc with eccentricity ε and foci at α and β ,

$$\Theta(lpha,\,eta;\,arepsilon)=\{z\in C\colon |z-lpha|+|z-eta|\leq |lpha-eta|/arepsilon\}\;.$$