THE RADICAL OF A REFLEXIVE OPERATOR ALGEBRA

ALAN HOPENWASSER

The radical of a reflexive operator algebra $\mathfrak A$ whose lattice of invariant subspaces $\mathfrak B$ is commutative is related to the space of lattice homomorphisms of $\mathfrak B$ onto $\{0,1\}$. To each such homomorphism ϕ is associated a closed, two-sided ideal $\mathfrak A_\phi$ contained in $\mathfrak A$. The intersection of the $\mathfrak A_\phi$ is contained in the radical; it is conjectured that equality always holds. The conjecture is proven for a variety of special cases: countable direct sums of nest algebras; finite direct sums of algebras which satisfy the conjecture; algebras whose lattice of invariant subspaces is finite; algebras whose lattice of invariant subspaces is isomorphic to the lattice of nonincreasing sequences with values in $N \cup \{\infty\}$.

1. Introduction. This paper studies the radical of a certain class of non-self-adjoint operator algebras. Given an algebra $\mathfrak A$ and a lattice $\mathfrak B$ of orthogonal projections acting on a separable Hilbert space $\mathfrak B$, we use the standard notations, $\mathfrak A$ and $\mathfrak A$ ig $\mathfrak B$, to denote, respectively, the lattice of all projections invariant under $\mathfrak A$ and the algebra of all (bounded) operators which leave invariant each projection of $\mathfrak B$. $\mathfrak A$ and $\mathfrak B$ are said to be reflexive if $\mathfrak A=\mathfrak A$ ig $\mathfrak B$ and $\mathfrak B$ are said to be reflexive if $\mathfrak A=\mathfrak A$ ig $\mathfrak B$ and $\mathfrak B$ respectively. The algebras which we study are reflexive algebras which contain a maximal abelian self-adjoint algebra (m.a.s.a.).

A commutative subspace lattice is a lattice of pairwise commuting, orthogonal projections on $\mathfrak P$ which contains 0 and 1 and which is closed in the strong operator topology. It follows automatically that a commutative subspace lattice is a complete lattice. If $\mathfrak A$ is an operator algebra containing a m.a.s.a., then $\mathfrak L$ is a commutative subspace lattice. Every commutative subspace lattice, $\mathfrak P$, is reflexive ([1], p. 468), and $\mathfrak A$ is a reflexive algebra which contains a m.a.s.a. Henceforth, all lattices of projections in this paper will be commutative subspace lattices and all algebras will be reflexive algebras which contain a m.a.s.a. An incisive study of these lattices and algebras by Arveson is found in [1].

At least in certain special cases, the radical of a reflexive algebra, \mathfrak{A} , containing a m.a.s.a. can be described in terms of the set of lattice homomorphisms from $\mathfrak{L}=\mathfrak{Lat}\,\mathfrak{A}$ onto $\{0,1\}$. To each such homomorphism ϕ we shall associate a closed two-sided ideal \mathfrak{A}_{ϕ} in \mathfrak{A} . The radical, \mathfrak{R} , of \mathfrak{A} is equal to the intersection of these ideals. It appears reasonable to conjecture that this equality holds for all