NORMS OF POWERS OF ABSOLUTELY CONVERGENT FOURIER SERIES: AN EXAMPLE

CHARLES H. HEIBERG

Let f be defined on T^2 and have an absolutely convergent Fourier series

$$f(e^{i\sigma_1}, e^{i\sigma_2}) = \sum f_m e^{im_1\sigma_1} e^{im_2\sigma_2}.$$

Set $||f|| = \sum |f_m|$ and $||f||_2^2 = \sum |f_m|^2$. In this paper the asymptotic behavior of $||f^k||$, as $k \to \infty$, is studied.

THEOREM 1. Let f be a continuous function on T^2 such that

(1)
$$|f(z)| < 1$$
 for $z \neq (1, 1), |z_1| = |z_2| = 1$

and such that for all σ in some \mathbb{R}^2 neighborhood of (0,0)

(2)
$$f(e^{i\sigma}) = \exp(i\lambda(\sigma) - \psi(\sigma))$$

where λ is a real-valued linear function defined on \mathbb{R}^2 and ψ is a continuous, complex-valued valued function defined on \mathbb{R}^2 and satisfying certain smoothness conditions to be defined near the end of \$2 below. Then

(i)
$$||f^k||_2^2 \leq ak^{-1/p} \log k$$
,

(ii)
$$\sup_m |(f^k)_m| \leq ak^{-1/p} \log k$$
,

- (iii) $bk^{-1/p}\log k \leq \sup_m \operatorname{Re}(f^k)_m$,
- (iv) $b \log k \leq \sum_{m} |\operatorname{Re}(f^{k})_{m}|.$

THEOREM 2. There exists a polynomial f in two complex variables satisfying f(1, 1) = 1 and

$$|f(z)| < 1$$
 for $z \neq (1, 1)$, $|z_1| = |z_2| = 1$,

such that

(i) $||f^k|| \leq b \log k$,

- (ii) $a \log k \leq ||f^k||,$
- (iii) $a \log k \le || |f|^k ||,$
- (iv) $||f^k||_2^2 \leq b \sup_m |(f^k)_m|.$

In 1970 B. M. Schreiber published smoothness conditions which, for functions defined on T^{q} , having absolutely convergent Fourier series and