AN IMBEDDING THEOREM FOR INDETERMINATE HERMITIAN MOMENT SEQUENCES

FRANCIS J. NARCOWICH

Hermitian moment sequences are generalizations of classical power moment sequences to bounded operators on a Hilbert space. The main result is that every indeterminate Hermitian moment sequence on a complex Hilbert space can be imbedded in a determinate Hermitian moment sequence on an enlarged Hilbert space in the sense that the first sequence is a compression of the second. This implies the existence of determinate Hermitian moment sequences which, when compressed, are indeterminate and leads to the following questions: Which orthogonal projections on the Hilbert space give rise to determinate compressions of a fixed, determinate sequence? What structure do these projections induce on the underlying Hilbert space?

Background. Let \mathcal{H} be a complex Hilbert space, with inner product (\cdot, \cdot) and norm $\|\cdot\|$, and let $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . A sequence $\{T_j\}_{j=0}^{\infty}, T_j \in B(\mathcal{H})$, is said to be an *Hermitian moment sequence* (cf. J. S. MacNerney [4]) if there exists a positive operator-valued measure (cf. Berberian [2]), $\mu(\cdot)$, defined on the Borel sets of $(-\infty, \infty)$, such that

(1)
$$T_{j} = \int_{-\infty}^{\infty} t' d\mu(t), \qquad j = 0, 1, 2, \cdots.$$

Necessary and sufficient conditions for a sequence of operators to be of the form (1) and, in addition, be such that $\mu(\cdot)$ has support over a finite interval were first given by B. Sz.-Nagy [6]. General necessary and sufficient conditions for a sequence to be of the form (1), with no restrictions on the support of $\mu(\cdot)$, were first given by J. S. MacNerney [4].

An Hermitian moment sequence (1) will be said to be *determinate* if $\mu(\cdot)$ is unique, and *indeterminate* otherwise (cf. Akhiezer [1], Dubois-Violette [3], and Shohat and Tamarkin [7]).

Main result. A determinate moment sequence $\{T_i\}$ can be "imbedded" in an indeterminate moment sequence on $\mathcal{H} = \mathcal{H} \oplus \mathcal{H}$. For example, let $\{a_i\}_{i=0}^{\infty}$ be a scalar-valued indeterminate moment sequence, I be the identity operator on \mathcal{H} , and P be the orthogonal projection from \mathcal{H} to $0 \oplus \mathcal{H} = \mathcal{H}$. The sequence,