NORMS OF COMPACT PERTURBATIONS OF OPERATORS

CATHERINE L. OLSEN

Let $\mathscr{B}(\mathscr{H})$ denote the algebra of all bounded linear operators on a complex separable Hilbert space. This paper is concerned with reducing the norm of a product of operators by compact perturbations of one or more of the factors. For any Tin $\mathscr{B}(\mathscr{H})$, it is well known that the infimum,

 $||T||_e = \inf\{||T + K||: K \text{ is a compact operator}\}$

is attained by some compact perturbation $T + K_0$. For T a noncompact product of n operators, $T = T_1 \cdots T_n$, it is proved that this infimum can be obtained by a compact perturbation of any one of the factors. If T is a compact product, so that the infimum is zero, it is shown that there are compact perturbations $T_1 + K_1, \cdots, T_n + K_n$ of the factors of T such that the product $(T_1 + K_1) \cdots (T_n + K_n)$ is zero; furthermore, it may be necessary to perturb every factor of T in order to obtain this zero infimum. These results are applied to an arbitrary operator T to find a compact perturbation T + K with $||(T + K)^2|| = ||T^2||_e$ and $||(T + K)^3|| = ||T^3||_e$; here the identical factors are perturbed in identical fashion to achieve both infima. Stronger theorems of this latter sort are proved for special classes of operators.

For any T in $\mathscr{B}(\mathscr{H})$, let $||T||_e$ as defined above, be called the *essential* norm of T [7]. I. C. Gohberg and M. G. Krein first showed in [4] that for any T in $\mathscr{B}(\mathscr{H})$ there is a compact perturbation $T + K_0$ which realizes the essential norm (so $||T + K_0|| = ||T||_e$). The case n = 2 of the theorem stated above for compact products was proved in a different way in [6]: for any compact product $T = T_1T_2$ of two factors, a projection E was constructed so that T_1E and $(I - E)T_2$ are both compact (and so that the product of perturbations $T_1(I - E)$ and ET_2 is zero).

This study was motivated partly by questions considered by J. K. Plastiras and the author in [7]: if T is a bounded operator on \mathcal{H} , is there a compact K with $||p(T+K)|| = ||p(T)||_e$ for all complex polynomials p? Less ambitiously, if T and p are both given, is there a compact K_p such that $||p(T+K_p)|| = ||p(T)||_e$? We know of no examples where either of these questions has a negative answer.

It follows from the results proved here on perturbations of products that for each T in $\mathcal{B}(\mathcal{H})$, there is a compact K with $||T + K|| = ||T||_e$ and $||(T + K)^2|| = ||T^2||_e$; and a compact L with $||(T + L)^2|| = ||T^2||_e$ and $||(T + L)^3|| = ||T^3||_e$. If T^3 is not compact we can take K = L, to get one