NORMS OF COMPACT PERTURBATIONS

 OF OPERATORSCatherine L. Olsen

Let $\mathscr{B}(\mathscr{H})$ denote the algebra of all bounded linear operators on a complex separable Hilbert space. This paper is concerned with reducing the norm of a product of operators by compact perturbations of one or more of the factors. For any T in $\mathscr{B}(\mathscr{H})$, it is well known that the infimum,

$$
\|T\|_{e}=\inf \{\|T+K\|: K \text { is a compact operator }\}
$$

is attained by some compact perturbation $T+K_{0}$. For T a noncompact product of n operators, $T=T_{1} \cdots T_{n}$, it is proved that this infimum can be obtained by a compact perturbation of any one of the factors. If T is a compact product, so that the infimum is zero, it is shown that there are compact perturbations $T_{1}+K_{1}, \cdots, T_{n}+K_{n}$ of the factors of T such that the product $\left(T_{1}+K_{1}\right) \cdots\left(T_{n}+K_{n}\right)$ is zero; furthermore, it may be necessary to perturb every factor of T in order to obtain this zero infimum. These results are applied to an arbitrary operator T to find a compact perturbation $T+K$ with $\left\|(T+K)^{2}\right\|=\left\|T^{2}\right\|_{e}$ and $\left\|(T+K)^{3}\right\|=\left\|T^{3}\right\|_{e}$; here the identical factors are perturbed in identical fashion to achieve both infima. Stronger theorems of this latter sort are proved for special classes of operators.

For any T in $\mathscr{B}(\mathscr{H})$, let $\|T\|_{e}$ as defined above, be called the essential norm of T [7]. I. C. Gohberg and M. G. Krein first showed in [4] that for any T in $\mathscr{B}(\mathscr{H})$ there is a compact perturbation $T+K_{0}$ which realizes the essential norm (so $\left\|T+K_{0}\right\|=\|T\|_{e}$). The case $n=2$ of the theorem stated above for compact products was proved in a different way in [6]: for any compact product $T=T_{1} T_{2}$ of two factors, a projection E was constructed so that $T_{1} E$ and $(I-E) T_{2}$ are both compact (and so that the product of perturbations $T_{1}(I-E)$ and $E T_{2}$ is zero).

This study was motivated partly by questions considered by J. K. Plastiras and the author in [7]: if T is a bounded operator on \mathscr{H}, is there a compact K with $\|p(T+K)\|=\|p(T)\|_{e}$ for all complex polynomials p ? Less ambitiously, if T and p are both given, is there a compact K_{p} such that $\left\|p\left(T+K_{p}\right)\right\|=\|p(T)\|_{e}$? We know of no examples where either of these questions has a negative answer.

It follows from the results proved here on perturbations of products that for each T in $\mathscr{B}(\mathscr{H})$, there is a compact K with $\|T+K\|=\|T\|_{e}$ and $\left\|(T+K)^{2}\right\|=\left\|T^{2}\right\|_{e} ;$ and a compact L with $\left\|(T+L)^{2}\right\|=\left\|T^{2}\right\|_{e}$ and $\left\|(T+L)^{3}\right\|=\left\|T^{3}\right\|_{e} . \quad$ If T^{3} is not compact we can take $K=L$, to get one

