SUPERALGEBRAS OF WEAK-*DIRICHLET ALGEBRAS

TAKAHIKO NAKAZI

Let A be a weak-*Dirichlet algebra of $L^{\infty}(m)$ and let $H^{\infty}(m)$ denote the weak-*closure of A in $L^{\infty}(m)$. Muhly showed that if $H^{\infty}(m)$ is an integral domain, then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$. We show in this paper that if $H^{\infty}(m)$ is not maximal as a weak-*closed subalgebra of $L^{\infty}(m)$, there is no algebra which contains $H^{\infty}(m)$ and is maximal among the proper weak-*closed subalgebras of $L^{\infty}(m)$. Moreover, we investigate the weak-*closed superalgebras of A and we try to classify them. We show that there are two canonical weak-*closed superalgebras of A which play an important role in the problem of describing all the weak-*closed superalgebras of A.

*Dirichlet algebra is an algebra A of essentially bounded measurable functions on a probability measure space (X, \mathcal{A}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in $L^{\infty}(m)$ (the bar denotes conjugation, here and always); (iii) for all f and g in A, $\int_{X} fgdm = \int_{X} fdm \int_{X} gdm$. The abstract Hardy space $H^{p}(m)$, $1 \le p \le \infty$, associated with A are defined as follows. For $1 \le p \le \infty$, $H^{p}(m)$ is the $L^{p}(m)$ -closure of A, while $H^{\infty}(m)$ is defined to be the weak-*closure of A in $L^{\infty}(m)$. For $1 \le p \le \infty$, let $H^{p}_{0} = \{f \in H^{p}(m); \int_{X} fdm = 0\}$.

A (weak-*closed) subalgebra B^{∞} of $L^{\infty}(m)$, containing A, is called a superalgebra of A. Let $B_0^{\infty} = \left\{ f \in B^{\infty}; \int_X f dm = 0 \right\}$ and let I_B^{∞} be the largest weak-*closed ideal of B^{∞} which is contained in B_0^{∞} . (The existence of I_B^{∞} is shown in Lemma 2 of [6]). If $B^{\infty} = H^{\infty}(m)$ (resp. $L^{\infty}(m)$), it is clear that $B_0^{\infty} = I_B^{\infty} = H_0^{\infty}$ (resp. $I_B^{\infty} = \{0\}$). In general, $I_B^{\infty} \subseteq H_0^{\infty}$ by [6, Lemma 2]. Let \mathcal{L}_B^{∞} be a self-adjoint part of B^{∞} , i.e. the set of all functions in B^{∞} whose complex conjugates are also in B^{∞} .

For any subset $M \subseteq L^{\infty}(m)$ and $1 \le p < \infty$, denote by $[M]_p$ the norm closed linear span of M in $L^p(m)$ and by $[M]_*$ the weak-*closed linear span of M. For a weak-*closed superalgebra B^{∞} , let $B^p = [B^{\infty}]_p$ and let $I_B^p = [I_B^{\infty}]_p$ for $1 \le p < \infty$. For any measurable subset E of X, the function χ_E is the characteristic function of E. If $f \in L^p(m)$, denote by E_f the support set of f and by χ_f the characteristic function of E_f .