# GENERALISED QUASI-NÖRLUND SUMMABILITY 

Premalata Mohapatro


#### Abstract

Just as ( $N, p, q$ ) generalises Nörlund methods, so also, in this paper we define generalised quasi-Nörlund Method ( $N^{*}, p, q$ ) generalising the quasi-Nörlund method due to Thorpe.

To begin with, we have determined the inverse of a generalised quasi-Nörlund matrix in a limited case. Besides, limitation Theorems for both ordinary and absolute ( $N^{*}, p, q$ ) summability have been established.

Finally we have established an Abelian Theorem (the main theorem) for $\left(N^{*}, p, q\right) \Rightarrow(J, q)$, where $(J, q)$ is a power series method which reduces to the Abel method (A) for $q_{n}=1$ (all $n$ ).


1. Vermes [10] pointed out that there is a close relation between the summability properties of a matrix $A=\left(a_{n k}\right)$ regarded as a sequence to sequence transformation and those of its transpose $A^{*}=\left(a_{k n}\right)$ regarded as a series to series transformation.

Suppose that $A$ is a sequence to sequence transformation and further that

$$
\sum_{k=0}^{\infty} a_{n k}=1 \quad \text { for all } n
$$

then by using Theorems of regularity (see Hardy [5], Theorem 2) and absolute regularity (see Knopp and Lorentz [6]) we see that $A^{*}$ is an absolutely regular series to series transformation.

Conversely, given any absolutely regular series to series method $C=\left(c_{n k}\right)$, its transpose $C^{*}$ is regular as a sequence to sequence method provided that

$$
c_{n k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \quad \text { for fixed } n .
$$

We can also see that if $A$ is absolutely regular and the above condition is satisfied then $A^{*}$ is regular and the converse also holds.

We shall call $A^{*}$ the quasi-method associated with $A$ and remember that, it is a series to series transformation.

Kuttner [7] defined quasi-Cesàro summability and investigated its main properties as a quasi-Hausdorff transformation (see also Ramunujan [8] and White [11]. Thorpe [9] defined quasi-Nörlund (quasi-Riesz) summability.

Just as ( $N, p, q$ ) generalises Nörlund methods, so also we can define generalised quasi-Nörlund method ( $N^{*}, p, q$ ) generalising the quasiNörlund methods. We give the definition in the following manner:

