UNMIXED 2-DIMENSIONAL LOCAL DOMAINS

STEPHEN MCADAM

Let b, c be a system of parameters in a 2-dimensional local (Noetherian) domain (R, M). For $n \ge 0$, the chain $(b^n: 1) \subset (b^n: c) \subset (b^n: c^2) \subset \cdots$ becomes stable. Thus define a function S(b, c, -) by letting S(b, c, n) be the least integer $k \ge 0$ such that $(b^n: c^k) = (b^n: c^{k+1})$. Ratliff has shown that R is unmixed if and only if S(b, c, -) is bounded. This paper shows that if R is unmixed then for any $0 \ne d \in M$ there is an integer $*d \ge 0$ such that for any system of parameters b, c and any $i \ge 0, S(b, c, *b + i) = *c$.

Introduction. We consider a 2-dimensional local domain (R, M) with a system of parameters b, c. (That is, b and c are nonzero nonunits, and no height 1 prime contains both of them.) For a fixed $n \ge 0$, obviously $(b^n: 1) \subset (b^n: c) \subset (b^n: c^2) \subset \cdots$. As this chain eventually becomes stable, we define a function S(b, c, -) by letting S(b, c, n) be the least integer $k \ge 0$ such that $(b^n: c^k) = (b^n: c^{k+1}) = \cdots$. A recent result of Ratliff shows that R is unmixed if and only if S(b, c, -) is bounded. In this paper we show that if R is unmixed, then for any $0 \ne d \in M$ there is an integer $*d \ge 0$ such that for any system of parameters b, c, and for any $i \ge 0, S(b, c, *b + i) = *c$.

NOTATION. Throughout this paper, (\mathbf{R}, \mathbf{M}) will be a 2-dimensional local domain and b, c will be a system of parameters for R. For $d \in \mathbf{R}$, $d^0 = 1$.

We consider the following two arrays of ideals, the displayed inclusions being trivial.

$$(1: 1) \subset (1: c) \subset (1: c^{2}) \subset \cdots$$

$$\cup \qquad \cup \qquad \cup$$

$$(b: 1) \subset (b: c) \subset (b: c^{2}) \subset \cdots$$

$$\cup \qquad \cup \qquad \cup$$

$$(b^{2}: 1) \subset (b^{2}: c) \subset (b^{2}: c^{2}) \subset \cdots$$

$$\cup \qquad \cup \qquad \cup$$

$$(b^{3}: 1) \subset (b^{3}: c) \subset (b^{3}: c^{2}) \subset \cdots$$

$$\bigcup \qquad \cup \qquad \cup$$

$$\vdots \qquad \vdots \qquad \vdots$$