A RANDOM FIXED POINT THEOREM FOR A MULTIVALUED CONTRACTION MAPPING

Shigeru Itoh

Some results on measurability of multivalued mappings are given. Then using them, the following random fixed point theorem is proved: Theorem. Let X be a Polish space, (T, \mathcal{A}) a measurable space. Let $F: T \times X \to CB(X)$ be a mapping such that for each $x \in X$, $F(\cdot, x)$ is measurable and for each $t \in T$, $F(t, \cdot)$ is k(t)-contraction, where $k: T \to [0, 1)$ is measurable. Then there exists a measurable mapping $u: T \to X$ such that for every $t \in T$, $u(t) \in F(t, u(t))$.

1. Introduction. Random fixed point theorems for contraction mappings in Polish spaces were proved by Špaček [8], Hanš [2, 3], etc. For a brief survey of them and related results, we refer the reader to Bharucha-Reid [1, Chapter 3]. On the other hand, fixed point theorems for multivalued contraction mappings in complete metric spaces were obtained by Nadler [7], etc.

In this paper, in §3 we give some results on measurability and measurable selectors of multivalued mappings. Then in §4, using them we prove a random fixed point theorem for a multivalued contraction mapping in a Polish space.

The author wishes to express his gratitude to Professors H. Umegaki and W. Takahashi for their encouragement in preparing this paper.

2. Preliminaries. Throughout this paper, let (X, d) be a Polish space, i.e., a separable complete metric space, and (T, \mathcal{A}) a measurable space. For any $x \in X$, $B \subset X$, we denote d(x, B) = $\inf\{d(x, y): y \in B\}$. Let 2^x be the family of all subsets of X, CB(X) the family of all nonempty bounded closed subsets of X, \mathcal{B} the σ -algebra of Borel subsets of X, respectively. Let D be the Hausdorff metric on CB(X) induced by d. A mapping $S: X \rightarrow CB(X)$ is called k-Lipschitz, where $k \ge 0$, if for every $x, y \in X$, $D(S(x), S(y)) \le kd(x, y)$. When k < 1, then S is called k-contraction. A mapping $F: T \rightarrow 2^{x}$ is called (\mathcal{A}) measurable if for any open subset B of X, $F^{-1}(B) \in \mathcal{A}$, where $F^{-1}(B) = \{t \in T: F(t) \cap B \neq \emptyset\}$. Notice that in Himmelberg [5] this is called weakly measurable, but in this paper we use only this type of measurability for multivalued mappings, hence we omit the term 'weakly' for the sake of simplicity. A mapping $u: T \rightarrow X$ is said to be a measurable selector of a measurable mapping $F: T \rightarrow 2^x$ if u is measurable and for any $t \in T$, $u(t) \in F(t)$.