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A RANDOM FIXED POINT THEOREM
FOR A MULTIVALUED CONTRACTION MAPPING

SHIGERU ITOH

Some results on measurability of multivalued mappings are
given. Then using them, the following random fixed point
theorem is proved: Theorem. Let X be a Polish space, (T, d) a
measurable space. Let F: T x X—» CB(X) be a mapping such
that for each x E X, F( , x) is measurable and for each t ET,
F{t, ) is k (O-contraction, where k: T -> [0,1) is
measurable. Then there exists a measurable mapping
u: Γ - » X such that for every ίG T, u(t)G F(t,u(t)).

1. Introduction. Random fixed point theorems for contrac-
tion mappings in Polish spaces were proved by Spacek [8], Hans [2,3],
etc. For a brief survey of them and related results, we refer the reader
to Bharucha-Reid [1, Chapter 3]. On the other hand, fixed point
theorems for multivalued contraction mappings in complete metric
spaces were obtained by Nadler [7], etc.

In this paper, in §3 we give some results on measurability and
measurable selectors of multivalued mappings. Then in §4, using them
we prove a random fixed point theorem for a multivalued contraction
mapping in a Polish space.
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2. Preliminaries. Throughout this paper, let (X, d) be a
Polish space, i.e., a separable complete metric space, and (Γ, si) a
measurable space. For any x E X, B CX, we denote d(x, B) =
inί{d(x, y): y E £}. Let 2X be the family of all subsets of X, CB(X) the
family of all nonempty bounded closed subsets of X, 0b the σ-algebra of
Borel subsets of X, respectively. Let D be the Hausdorfϊ metric on
CB(X) induced by d. A mapping S: X-> CB(X) is called k-Lipschitz,
where fc^O, if for every x,yGX, D(S(x), 5(y))g fcd(x,y). When
k < 1, then S is called k -contraction. A mapping F: T-+2X is called
(sί-)measurable if for any open subset B of X, F"1(J3)E si, where
F\B) = {t£T: F(t) Γ\B^0\. Notice that in Himmelberg [5] this is
called weakly measurable, but in this paper we use only this type of
measurability for multivalued mappings, hence we omit the term 'weakly'
for the sake of simplicity. A mapping u\T-^>X is said to be a
measurable selector of a measurable mapping F: T-> 2X if u is measura-
ble and for any t E Γ, u(t)E F(ί).
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