SYMMETRIZABLE-CLOSED SPACES

R. M. STEPHENSON, JR.

Symmetrizable-closed, semimetrizable-closed, minimal symmetrizable, and minimal semimetrizable spaces are charac terized. G. M. Reed's theorem that every Moore-closed space is separable is extended to: Every Baire, semimetrizable-closed space is separable. Several examples are given.

If P is a topological property, a Hausdorff P -space will be called *P-closed* provided that it is a closed subset of every Hausdorff P-space in which it can be embedded. A Hausdorff P-space (X, *SΓ)* will be called *minimal P* if there exists no Hausdorff P-topology on X strictly weaker than \mathcal{T} .

In [3] J. W. Green characterized and studied Moore-closed and minimal Moore spaces. In this paper we obtain some analogous results for semimetrizable spaces and symmetrizable spaces.

A *symmetric* for a topological space X is a mapping *d:Xx* $X\rightarrow[0,\infty)$ such that

(1) For all $x, y \in X$, $d(x, y) = d(y, x)$, and $d(x, y) = 0$ if and only if $x = y$.

(2) A set $V \subset X$ is open if and only if for each $x \in V$ there exists $n \in \mathbb{N}$ such that *V* contains the set $B(n, x) = \{y \in X | d(x, y) < 1/n\}.$

A space X which admits a symmetric is said to be *symmetrizable,* and if, in addition, each $B(n, x)$ is a neighborhood of x, then X is said to be *semimetrizable* and *d* is called a *semimetric* for X. Equivalently, X is semimetrizable via *d* provided that for $x \in X$, $A \subset X$, and $d(x, A) =$ inf $\{d(x,a) | a \in A\}$, the condition $x \in \overline{A}$ if and only if $d(x,A) = 0$ is satisfied.

A number of the techniques used here are not new; for example, see [2]. The terminology used is standard. One perhaps not too familiar concept is that of *θ* -adherence. A point *p* of a topological space is said to be a *θ-adherent point* (or be in the *θ-adherence)* of a filter base *SF* provided that for every set $F \in \mathcal{F}$ and neighborhood V of p, one has $F \cap \overline{V} \neq \emptyset$.

Our first two theorems are characterization theorems.

THEOREM 1. *Let* (X, *SΓ) be a symmetrizable Hausdorff space. The following are equivalent.*

(i) *The space* (X, *2Γ) is minimal symmetrizable.*

(ii) *Every countable filter base on* (X, *SΓ) which has a unique θ~ adherent point is convergent.*