ADDENDUM TO "RATIONAL APPROXIMATION OF e^{-x} ON THE POSITIVE REAL AXIS"

D. J. NEWMAN AND A. R. REDDY

Our aim in this addendum is to improve Theorem 3 of Newman and Reddy (*Pacific J. Math.*, **64** (1976), 227–232). We also take this opportunity to correct some misprints occurring in Theorem 6 of the above paper. For convenience we refer the above note to [1]. We follow here notation and numbering as in [1].

THEOREM 3*. $\lambda_{0,4n}^{*}(e^{-x}) \leq 4n^{-4}, n \geq 1.$

Proof. It is easy to verify that $1 + x + x^2/2! + x^3/3! + x^4/4!$ has zeros only in the left hand plane. As far as we know this is the largest partial sum of e^x which has zeros only in the left half plane. Now using this in the proof of Theorem 3 of [1] instead of $1 + x + x^2/2!$, and by following the same approach we can get the required result.

We would like to point out now that the cases n = 1, 2, 3 of Theorem 5 follows from (12) and (14).

In the proof of Theorem 6 of [1], the following changes are necessary.

Change
$$\frac{v^2}{2}$$
 to $\frac{v^2}{2.25}$, $\frac{1}{\binom{2m}{m}\sqrt{m}}$ to $\frac{1.9}{\binom{2m}{m}\sqrt{m}}$, and $\frac{n}{\sqrt{m}}$ to $\frac{(1.9)n}{\sqrt{m}}$.

Then we get for all $n \ge 8$, $\epsilon \ge e^{-5n^{2/3}}$. By choosing $A = 3n^{2/3}$, $m = [n^{2/3}]$, we get for $1 \le n \le 7$, $\epsilon \ge e^{-5n^{2/3}}$.

Received January 21, 1977

Temple University and The Institute for Advanced Study, Princeton Princeton, NJ 08540