A COMMUTATIVITY THEOREM FOR NON-ASSOCIATIVE ALGEBRAS OVER A PRINCIPAL IDEAL DOMAIN

JIANG LUH AND MOHAN S. PUTCHA

Let A be an algebra (not necessarily associative) over a principal ideal domain R such that for all $a, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta) = 1$ and $\alpha ab = \beta ba$. It is shown that A is commutative.

Throughout this paper N will denote the set of natural numbers and Z^+ the set of positive integers. A will denote an algebra with identity 1 over a Principal Ideal Domain R. If $a, b \in A$ then [a, b] = ab - ba. If $\alpha, \beta \in R$, then (α, β) denotes the greatest common divisor of α and β . If $a \in A$, then the order of a, o(a) is the generator of the ideal $I = \{\alpha \mid a \in R, \alpha a = 0\}$ of R. o(a) is unique up to associates. As a generalization of concepts in [1], [2], [3], [4], [5] we consider the following:

(*) For all $a, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta) = 1$ and $\alpha ab = \beta ba$.

We will show that if A satisfies (*), then A is commutative. This generalizes [3; Theorem 3.5].

LEMMA 1. Let p be a prime in R, $m \in Z^+$ such that $p^m A = (0)$. If A satisfies (*), then A is commutative.

Proof. Let C denote the center of A. Let $x \in A$, $o(x) = p^k$, $k \in N$. We prove by induction on k that $x \in C$. If k = 0, then x = 0. So let k > 0. Let $y \in A$. First we show

(1)
$$[x, y] \neq 0$$
 implies $[yx, y] = 0$.

If yx = 0, this is trivial. So let $yx \neq 0$. Now for some $\alpha_1, \alpha_2 \in R$,

(2)
$$\alpha_1 x y = \alpha_2 y x, (\alpha_1, \alpha_2) = 1$$
$$\beta_1 (x+1) y = \beta_2 y (x+1), (\beta_1 \beta_2) = 1$$

So $\alpha_1\beta_1(x+1)y = \alpha_1\beta_2y(x+1)$. Thus substituting the above, we get

(3)
$$(\alpha_2\beta_1-\alpha_1\beta_2)yx=(\alpha_1\beta_2-\alpha_1\beta_1)y.$$