SEMIGROUPS WITH IDENTITY ON PEANO CONTINUA

W. WILEY WILLIAMS

A continuum is cell-cyclic if every cyclic element is a finite dimensional cell. We show that any finite dimensional cell-cyclic Peano continuum *X* **admits a commutative semi group with zero and identity, and apply this to show that if** *X* **is also homogeneous it is a point.**

In [12] we showed that each cell-cyclic Peano continuum (locally connected metric continuum every cyclic element of which is a finite dimensional cell) *X* admits a semilattice (commutative idempotent topological semigroup). We now extend this result to show that *X* admits a commutative semigroup with identity and zero, and then apply this to homogeneous continua. Our extension is a partial answer to a question first raised by R. J. Koch in [6].

A semilattice is also a partially ordered Hausdorff topological space in which every two elements have a greatest lower bound and the function $(x, y) \rightarrow \text{glb}\{x, y\}$ is continuous. For $A \subset S$, let $L(A) = \{z : z \leq x \text{ for some } x \in A\}$ and $M(A) = \{y : x \leq y \text{ for some } x \in A\}$ $x \in A$. A set A is *increasing* if $M(A) = A$. An arc chain is a totally ordered subset of a semilattice whose underlying space is an arc. We reserve *I* for the unit interval under min multiplication, and *T* for the quotient semilattice obtained by identifying (0, 0) and $(1, 0)$ in $\{0, 1\} \times I$. Note that $Iⁿ$ and $Tⁿ$, under coordinatewise multiplication, are semilattices with identity on the n -cell, with zero in the boundary and interior respectively.

Let X be a cell-cyclic Peano continuum. We use the cyclic element notation and results of Whyburn [10] and Kuratowski and Whyburn [8], slightly modified in the following way. In *X* we say a set *A* separates *a* and *b* if each arc from *a* to *b* meets *A. C(p, q)* denotes the *cyclic chain from p to q* and is $\{x \in X | \text{some arc from } p\}$ to *q* contains *%}.* An subcontinuum *A* of *X* is an *A-set* if each arc in *X* having end points in *A* is contained in *A.* Cyclic elements and cyclic chains are A-sets. Given a point x and an A-set A, if $x \notin A$ there is a unique element $y \in A$ such that y separates each element of A from *x*. Denote this *y* by $P(A, x)$. If $x \in A$ set $P(A, x) = x$. Then for a fixed A-set A the function $x \rightarrow P(A, x)$ is a monotone retraction of X onto A mapping $X \setminus A$ into $Fr(A) = \{x \in A \mid x \notin D^0 \}$ for any cyclic element *D* of A} U {cut points of A}. A set *M* is *nodal* in *X* if $M \n\cap (X \backslash M)^*$ contains at most one point. A point is an end *point* of *X* if it has a basis of neighborhoods having one point