COBORDISM CLASSES OF FIBER BUNDLES

DANIEL F. X. O'REILLY

This paper treats the problem of determining which unoriented cobordism classes have a representative which is the total space of a fiber bundle over a sphere. We are looking for a necessary and sufficient condition for a closed, compact, differentiable manifold to be cobordant to the total space of a fiber bundle over S^* .

Our results on bundles over S⁴ and S⁸ extend the results of P. E. Conner [3,4], E. E. Floyd [4], R. O. Burdick [2], W. D. Neumann [6], R. L. W. Brown [1] and R. E. Stong [7].

The following definition will facilitate the discussion.

DEFINITION 0.1. If α represents an unoriented cobordism class, we say that α fibers over S^k if α contains a representative which is the total space of a fiber bundle over S^k .

It has been shown (see [4] and [1]) that $[M^n]$ fibers over S^1 if and only if $\langle w_n, [M^n] \rangle$, which we will abbreviate by $w_n[M^n]$, is zero, and $[M^n]$ fibers over S^2 if and only if

$$egin{array}{lll} & w_n[M^n] = 0 & ext{if} \ n \ ext{is even} \ & w_{n-2}w_2[M^n] = 0 & ext{if} \ n \ ext{is odd} \ . \end{array}$$

The last condition is also sufficient for the cobordism class of a manifold to fiber over any particular N^2 , since Stong has shown that if $[M^n]$ fibers over S^k , then it fibers over any manifold of dimension less than or equal to k (see [7]).

Our main results are as follows.

THEOREM I. There are generators of \mathfrak{K}_* which fiber over S^* in all dimensions greater than or equal to 8 except 11 and, of course, those of the form $2^j - 1$.

COROLLARY I. We can choose generators of $\mathfrak{N}_* = Z_2[x_i | i \neq 2^j - 1]$ so that an element of either one of the following subalgebras will fiber over S⁴ if and only if the Stiefel-Whitney numbers associated with w_n and $w_{n-2}w_2$ are both zero. The subalgebras are:

$$egin{array}{ll} I = Z_2[x_i | \, i
eq 5, \, 6, \, 11 & {
m or} & 2^j - 1] \ J = Z_2[x_i | \, i
eq 4, \, 5, \, 11 & {
m or} & 2^j - 1] \ . \end{array}$$

THEOREM II. No indecomposable 11-dimensional class fibers