POSITIVE DEFINITE FUNCTIONS WHICH VANISH AT INFINITY

Alessandro Figà-Talamanca

Let G be a separable noncompact locally compact group. Let A(G) and B(G), respectively, be the Fourier algebra and the Fourier-Stieltjes algebra of G as defined by P. Eymard. We prove that if G is unimodular and satisfies an additional hypothesis, which implies noncompactness, there exists an element of B(G), indeed a positive definite function, which vanishes at infinity but is not in A(G). This function actually belongs to $B^{\rho}(G)$, that is, it defines a unitary representation of G which is weakly contained in the regular representation.

We refer to [3] for the definitions and properties of A(G), B(G), $B_{\ell}(G)$ and of the related spaces VN(G), $C^*(G)$ and $C^*_{\ell}(G)$.

We recall only that $C_{\rho}^{*}(G)$ and VN(G) are, respectively, the C^{*} algebra and the von Neumann algebra, generated by $L^{1}(G)$ acting by left convolution on $L^{2}(G)$. While $C^{*}(G)$ is the C^{*} -algebra of the group obtained by completing the algebra $L^{1}(G)$ with respect to the norm $||f||C^{*}(G) = \sup_{\pi \in \Sigma} ||\pi(f)||$, where Σ is the space of all *-representations of $L^{1}(G)$ as an algebra of operators on a Hilbert space. We also recall that B(G) is, in a natural fashion, the dual of $C^{*}(G)$, while $B_{\rho}(G)$ is the dual of $C_{\rho}^{*}(G)$ which is a quotient algebra of $C^{*}(G)$. Finally VN(G) is the dual of A(G);

When G is commutative and \hat{G} is the character group of G, A(G) and B(G), respectively, coincide with the algebra of Fourier transforms of elements of $L^1(\hat{G})$ and the algebra of Fourier-Stieltjes transforms of bounded regular measures on \hat{G} .

Thus for G commutative our result reduces to the classical theorem which asserts that on any nondiscrete locally compact abelian group \hat{G} , one can construct a singular measure with Fourier-Stieltjes transform vanishing at infinity. This classical result was proved for the first time, for the case $\hat{G} = T$ and G = Z, by M. D. Menchoff [10].

When G is noncommutative the situation may be quite different: I. Khalil proved in [6] that if G is the affine group of the line, i.e., the group of transformations $x \to ax + b$ of **R** into **R**, then $B(G) \cap C_0(G) = A(G)$.

Therefore some other hypothesis, in addition to noncompactness of G, is needed for our result to be true. In this paper we show that $A(G) \neq B(G) \cap C_0(G)$ provided that G is unimodular and in addition satisfies the following condition: