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NOETHERIAN FIXED RINGS

DANIEL R. FARKAS AND ROBERT L. SNIDER

One of the basic questions of noncommutative Galois
theory is the relation between a ring R and the ring S fixed
by a group of automorphisms of R. This paper explores
what happens when the group is finite and the fixed ring S
is assumed to be Noetherian. Easy examples show that R
may not be Noetherian; however, in this paper it is shown
that R is Noetherian with some rather natural assuptions.
More precisely we prove the Theorem 2: Let S be a semi-
prime ring. Assume that G is 4 finite group of automorphisms
of S and that S has no | G [-torsion. If S¢is left noetherian
then S is left noetherian.

Theorem 2 answers a question raised by Fisher and Osterburg [4].

This result rests on calculations which can best be described as
belonging to noncommutative Galois theory. The basic theorem here
may be of independent interest.

THEOREM 1. Let R be a semisimple artinian ring. If G is o
finite group of automorphisms of R and |G| is invertible in R then
R is a finitely generated ring RC-module.

The proof of Theorem 1 follows the spirit of Karchenko’s work
on polynomial identity rings ([6]).

1. A proof of Theorem 1. We will repeatedly need Levitzki’s
fixed ring theorem ([8]): Suppose R is a semisimple artinian ring.
If G is a finite group of automorphisms of R with |G| invertible in
R then R¢ is semisimple artinian.

LEMMA 1. If Theorem 1 is true when G is a simple group then
it is true for an arbitrary finite G.

Proof. By induction on the length of a composition series for G.

If G is not already simple choose HAG with 1+ H+ G. By
Levitzki’s theorem RZ is semisimple artinian. G/H acts on R¥ and
RZ has no |G/H|-torsion; by induction R¥ is a finitely generated
right R%module. Again, induction shows that R is a finitely generat-
ed right R?-module. The lemma follows.

We eventually assume that G is simple. In that case either G
consists entirely of outer automorphisms or entirely of inner auto-
morphisms.
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