ON THE MEASURABILITY OF CONDITIONAL EXPECTATIONS

Albrecht Irle

It is shown that for a measurable stochastic process V and a nondecreasing family of σ -algebras \mathcal{A}_t there exists a measurable stochastic process V^* such that $V^*(t, \cdot)$ is a version of $E(V(t, \cdot)|\mathcal{A}_t)$ for all t.

Let (Ω, \mathcal{A}, P) be a probability space (not necessarily complete), Tan interval (bounded or unbounded) of the real line and V a real-valued stochastic process defined on $T \times \Omega$ which is a measurable process, see Doob [3, p. 60]. Let $\mathcal{A}_t, t \in T, \mathcal{A}_t \subset \mathcal{A}$ form a nondecreasing family of σ -algebras. We shall prove in this note that under some boundedness condition on V the conditional expectations with respect to P, $E(V(t, \cdot)|\mathcal{A}_t)$ can be chosen as to define a measurable process on $T \times \Omega$. A similar statement appears in a paper by Brooks [1] but there it is additionally assumed that the family of σ -algebras is left-continuous, and the proof given there does not seem to carry over to a general nondecreasing family.

THEOREM. Suppose for each $t \in T$: $V(t, \cdot) \ge 0$ P-a.s. or $\int |V(t, \cdot)| dP < \infty$. Then there exists a measurable process V^* such that for each $t \in T$, $V^*(t, \cdot)$ is a version of $E(V(t, \cdot)|\mathcal{A}_t)$.

Proof. Since for any $t \in T$

$$E(V(t,\cdot)|\mathcal{A}_t) = E(V(t,\cdot)^+|\mathcal{A}_t) - E(V(t,\cdot)^-|\mathcal{A}_t)$$

we may assume without loss of generality that for each $t \in T$ $V(t, \cdot) \ge 0$ *P-a.s.* Using the linearity and monotone convergence property of conditional expectations the theorem now is easily reduced to the case that V is the characteristic function I_D of some subset $D = B \times A$ of $T \times \Omega$ with $A \in \mathcal{A}$ and B belonging to the Borel sets of T.

Since $E(I_D(t, \cdot)|\mathcal{A}_t) = I_B(t)E(I_A|\mathcal{A}_t)$ holds it is enough to show that $E(I_A|\mathcal{A}_t)$ can be chosen to form a measurable process. Let \mathcal{M} denote the set of all random variables on (Ω, \mathcal{A}, P) taking values in [0,1] with random variables that are equal *P*-a.e. identified. Then \mathcal{M} is a metrizable topological space under the topology of convergence in