CONSTRUCTING NEW R-SEQUENCES

MARK RAMRAS

R-sequences play an important role in modern commutative algebra. The purpose of this paper is to show how new R-sequences may be constructed from a given one. In the first section we give some general results, which are applied in the second section to obtain an explicit method of construction.

Recall that a sequence of elements x_1, \dots, x_n in R is an R-sequence if $(x_1, \dots, x_n)R \neq R$, x_1 is a nonzero divisor on R, and for $2 \leq i \leq n$, x_i is a nonzero divisor on $R/(x_1, \dots, x_{i-1})R$.

Throughout this paper R will be a commutative noetherian ring which contains a field K. Moreover, R will either be local or graded.

I wish to thank Melvin Hochster for showing me Proposition 1.5, which simplified this paper considerably.

1. It is easy to see that if $x_1, \dots, x_n \in R$ and X_1, \dots, X_n are independent indeterminates over K, and if $\varphi: K[X_1, \dots, X_n] \to R$ by $\varphi(f(X_1, \dots, X_n)) = f(x_1, \dots, x_n)$ is a flat monomorphism, then x_1, \dots, x_n is an *R*-sequence. The converse, when *R* is local, is due to Hartshorne [3].

PROPOSITION 1.1 (Hartshorne). Suppose R is local. If $x_1, \dots, x_n \in R$ form an R-sequence then $\varphi: K[X_1, \dots, X_n] \to R$ is a flat monomorphism, where φ is the map determined by $\varphi(X_i) = x_i$ for each i and $\varphi(a) = a$ for all $a \in K$.

REMARK. Saying that φ is a monomorphism is the same as saying that x_1, \dots, x_n are algebraically independent over K.

COROLLARY 1.2. Assume R is local. Suppose f_1, \dots, f_n is a $K[X_1, \dots, X_n]$ -sequence, and each $f_i \in (X_1, \dots, X_n)K[X_1, \dots, X_n]$. Suppose also that x_1, \dots, x_n is an R-sequence. Then

$$f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n)$$

is an R-sequence.

Proof. By Proposition 1.1 the map φ is a flat monomorphism. By flatness, since f_1, \dots, f_n is a $K[X_1, \dots, X_n]$ -sequence, $\varphi(f_1), \dots, \varphi(f_n)$