MAXIMAL SUBMONOIDS OF THE TRANSLATIONAL HULL

MARIO PETRICH

Maximal submonoids of a semigroup have recently attracted attention in semigroup literature. This is particularly true for the semigroup $\mathscr{B}(X)$ of binary relations on a set. The interesting results of Zareckiĭ in this direction point to the fact that some of these statements pertain to the more general situation of the translational hull of a Rees matrix semigroup. More generally, we consider here maximal submonoids of the translational hull of a regular semigroup.

The first, and the main, theorem in this paper says that if ω is an idempotent bitranslation of a regular semigroup S, then $\omega \Omega(S)\omega \cong$ $\Omega(\omega S\omega)$; here $\omega \Omega(S)\omega$ is a maximal submonoid of $\Omega(S)$. The second theorem pertains to subdirect irreducibility of certain subsemigroups of the translational hull of a Rees matrix semigroup. Finally, the third theorem concerns regular semigroups in which every maximal submonoid is a retract. These results have a number of consequences. The paper ends with several examples of concrete semigroups to which some of the preceding results are applied.

We start with a list of needed definitions and simple results. Let S be a semigroup. A function λ (resp. ρ), written on the left (resp. right) is a left (resp. right) translation of S if $\lambda(xy) = (\lambda x)y$ (resp. $(xy)\rho = x(y\rho)$) for all $x, y \in S$. The set A(S) (resp. P(S)) of all left (resp. right) translations of S under composition $(\lambda\lambda)'x =$ $\lambda(\lambda' z)$ (resp. $x(\rho \rho') = (x \rho) \rho'$) is a semigroup. The pair $(\lambda, \rho) \in A(S) \times$ P(S) is a bitranslation of S if $x(\lambda y) = (x\rho)y$ for all $x, y \in S$; the subsemigroup of $\Lambda(S) \times P(S)$ consisting of all bitranslations is the translational hull $\Omega(S)$ of S. Its elements will be usually written as $\omega = (\lambda, \rho)$, where ω is considered as a bioperator on S. For any $s \in S$, the function λ_s (resp. ρ_s) defined by $\lambda_s = sx$ (resp. $x\rho_s = xs$) for all $x \in S$, is the inner left (resp. right) translation and $\pi_s =$ (λ_s, ρ_s) is the inner bitranslation of S induced by s. The set $\Pi(S) = \{\pi_s | s \in S\}$ is an ideal of $\Omega(S)$ called its *inner part*. The mapping $\pi: s \to \pi_s$ is the canonical homomorphism of S into $\mathcal{Q}(S)$. It is one-to-one if and only if S is weakly reductive. In such a case for any (λ, ρ) , $(\lambda', \rho') \in \Omega(S)$, $s \in S$, we have $(\lambda s)\rho = \lambda(s\rho)$, and thus all parentheses may be omitted.

An element $s \in S$ is regular if s = sts for some $t \in S$; if also t = tst, then t is an *inverse* of s. A semigroup in which every element is regular is a *regular semigroup*. Note that every regular