SOME RESULTS ON PSEUDO-CONTRACTIVE MAPPINGS

W. A. KIRK AND RAINALD SCHÖNEBERG

Let E be a Banach space and D a subset of E. A mapping $f: D \to E$ such that $||u - v|| \le ||(1 + r)(u - v) - r(f(u) - v)||$ f(v) | for all $u, v \in D$, r > 0 is called pseudo-contractive. The basic result is the following: Let X be a bounded closed subset of E, suppose $f: X \to E$ is a continuous pseudo-contractive mapping such that f[X] is bounded, and suppose there exists $z \in X$ such that ||z-f(z)|| < ||x-f(x)|| for all $x \in \mathbf{boundary}$ (X). Then $\inf \{ ||x - f(x)|| : x \in X \} = 0$. If in addition X has the fixed point property with respect to nonexpansive self-mappings, then f has a fixed point in X. It follows from this result that if $T: E \rightarrow E$ is continuous and accretive with $||T(x)|| \to \infty$ as $||x|| \to \infty$, then T[E] is dense in E, and if in addition it is assumed that the closed balls in $oldsymbol{E}$ have the fixed-point property with respect to nonexpansive self-mappings, then T[E] = E. Also included are some theorems for continuous pseudo-contractive mappings f which involve demi-closedness of I-f and consequently require uniform convexity of E.

1. Introduction. Let E be a Banach space, X a subset of E, and f a mapping of X into E. Then f is said to be nonexpansive if for all $x, y \in X$,

$$||f(x) - f(y)|| \le ||x - y||$$

while f is said to be pseudo-contractive if for all $x, y \in X$ and r > 0,

$$||x-y|| \le ||(1+r)(x-y) - r(f(x) - f(y))||.$$

The pseudo-contractive mappings (which are clearly more general than the nonexpansive mappings) derive their importance in nonlinear functional analysis via their firm connection with the accretive transformations: A mapping $f: X \to E$ is pseudo-contractive if and only if the mapping T = I - f is accretive, i.e., for every $x, y \in X$ there exists $j \in J(x - y)$ such that

(2)
$$\operatorname{Re}(T(x) - T(y), j) \ge 0$$

where $J: E \rightarrow 2^{E^*}$ is the normalized duality mapping which is defined by

$$J(x) = \{j \in E^* : (x, j) = ||x||^2, ||j|| = ||x||\}.$$

(See Browder [3]; Kato [13].)