FIXED POINT THEOREMS FOR MAPPINGS WITH A CONTRACTIVE ITERATE

BARADA K. RAY AND B. E. RHOADES

Several fixed point theorems are proved for metric-space mappings which satisfy a contractive condition involving an iterate of the mapping, where the iterate depends on the point in the space.

Let (X, d) denote a complete metric space. In [3] the second author has established fixed point theorems for mappings which satisfy a variety of contractive conditions. The common property of the mappings discussed in [3] is that the fixed point is unique, and can be found by using repeated iteration, beginning with some initial choice $x_0 \in X$.

The first result in this direction is that of V. M. Sehgal [5] who proved the following.

THEOREM SI. *Let {X, d) be a complete metric space, T a continuous self-mapping of X which satisfies the condition that there exists a real number k,* $0 < k < 1$ *such that, for each* $x \in X$ *there exists a positive integer* $n(x)$ *such that, for each* $y \in X$ *,*

 $d(T^{n(x)}(x))$, $T^{n(x)}(y) \leq kd(x, y)$. (1)

Then T has a unique fixed point in X.

L. F. Guseman, Jr. [1], extended Sehgal's result by removing the condition of continuity of *T* and weakening (1) to hold on some subset *B* of *X* such that $T(B) \subset B$, where, for some $x_0 \in B$, *B* con tains the closure of the iterates of *x⁰ .* Further extensions for a single mapping appear in [2] and in [4].

We shall be concerned with a pair of mappings which satisfy the following contractive condition.

Let T_1 , T_2 be self-mappings of X such that there exists a constant k , $0 < k < 1$ such that there exist positive integers $n(x)$, $m(y)$ such that for each $x, y \in X$,

$$
(2) \qquad d(T_1^{n(x)}(x), T_2^{m(y)}(y)) \leq k \max \{d(x, y), d(x, T_1^{n(x)}(x)),
$$

$$
d(y, T_2^{m(y)}(y)), [d(x, T_2^{m(y)}(y)) + d(y, T_1^{n(x)}(x))]/2\}.
$$

THEOREM 1. Let T_1 , T_2 be self-mappings of a complete metric $space (X, d)$ which satisfy (2) . Then T_1 and T_2 have a unique *common fixed point.*