## TOTAL POSITIVITY AND THE EXACT n-WIDTH OF CERTAIN SETS IN $L^1$

CHARLES A. MICCHELLI AND ALLAN PINKUS

In this paper we obtain the exact value of the  $L^1$  n-width, both in the sense of Kolmogorov and Gel'fand, and characterize optimal subspaces for the set

$$\mathscr{K}_r = \left\{ \sum_{j=1}^r a_j k_j(t) + \int_0^1 K(t, s) h(s) ds \colon (a_1, \cdots, a_r) \in R^r, ||h||_1 \leq 1 \right\},$$

under certain total positivity assumptions on

$$\{k_1(t), \dots, k_r(t), K(t, s)\}$$
.

A matrix analogue is also described.

1. Introduction. Let X be a normed linear space,  $\mathscr{A}$  a subset of X, and  $X_n$  any n-dimensional linear subspace of X. Then the n-width of  $\mathscr{A}$  relative to X, in the sense of Kolmogorov, is defined to be

$$d_n(\mathscr{A}; X) = \inf_{X_n} \sup_{x \in \mathscr{A}} \inf_{y \in X_n} ||x - y||$$
.

 $X_n$  is called an optimal subspace for  $\mathscr M$  provided that

$$d_{\scriptscriptstyle{n}}(\mathscr{A};\,X) = \delta(\mathscr{A};\,X_{\scriptscriptstyle{n}}) = \sup_{x\in\mathscr{X}} \inf_{y\in\mathcal{X}_{\scriptscriptstyle{n}}} ||x-y||$$
 .

The n-width of  $\mathcal M$  relative to X, in the sense of Gel'fand, is defined as

$$d^{n}(\mathscr{A}; X) = \inf_{L_{n}} \sup_{x \in \mathscr{N} \cap L_{n}} ||x||$$
 ,

where  $L_n$  is any subspace of X of codimension n. If

$$d^{n}(\mathscr{A}; X) = \sup_{x \in \mathscr{A} \cap L_{n}} ||x||,$$

then  $L_n$  is an optimal subspace for the Gel'fand n-width of  $\mathcal{M}$ .

A typical choice for  $\mathcal{A}$  is the image of the unit ball under a compact mapping K of X into itself,

$$\mathscr{K} = \{Kx: ||x|| \leq 1\}.$$

When X is a Hilbert space then it is possible to obtain an exact value for  $d_n(\mathcal{X}; X)$ . This fact originated with the methods used in Kolmogorov's seminal paper [4]. For  $X = L^{\infty}[0, 1]$ , we computed (in [6]) the n-widths of  $\mathcal{X}$  when K is an integral operator determined by a totally positive kernel.

In this paper, we obtain the exact value of the  $L^1$  n-width, both