T^{n} -ACTIONS ON SIMPLY CONNECTED (n + 2)-MANIFOLDS

DENNIS MCGAVRAN

In this paper we show that, for each $n \ge 2$, there is a unique, closed, compact, connected, simply connected (n + 2)manifold, M_{n+2} , admitting an action of T^n satisfying the following condition: there are exactly $n T^1$ -stability groups T_1, \dots, T_n with each $F(T_i, M_{n+2})$ connected. In this case we have $T^n \cong T_1 \times \dots \times T_n$. Any other action $(T^n, M^{n+2}), M^{n+2}$ simply connected, can be obtained from an action (T^n, M_{n+2}) by equivariantly replacing copies of $D^4 \times T^{n-2}$ with copies of $S^3 \times D^2 \times T^{n-3}$. As an application, we classify all actions of T^n on simply connected (n + 2)-manifolds for n = 3, 4.

Several results have been obtained about T^n -actions on (n + 2)manifolds. Orlik and Raymond have obtained various classification theorems for the cases n = 1, 2 (see [11], [12] and [14]). Various general results have been obtained in [4] and [5] for n > 2. This paper is a continuation of the work done in [4]. We also obtain classification theorems similar to those of [12] for n = 3, 4.

In [4] it was shown that, for each n, there exist actions of T^n on simply connected (n + 2)-manifolds. Here we prove the following.

THEOREM. For each n, there is a unique closed, compact, connected, simply connected (n + 2)-manifold M_{n+2} admitting an action of T^n satisfying the following conditions:

(i) There are exactly $n T^1$ -stability groups T_1, \dots, T_n .

(ii) Each $F(T_i, M_{n+2})$ is connected.

Furthermore, $T^n \cong T_1 \times \cdots \times T_n$.

We then show that any action (T^n, M^{n+2}) , M^{n+2} a closed, compact, connected, simply connected (n + 2)-manifold, can be obtained from an action (T^n, M_{n+2}) by equivariantly replacing copies of $D^4 \times T^{n-2}$ with copies of $S^3 \times D^2 \times T^{n-3}$.

The above results are applied to two specific cases. We show that if T^3 acts on a simply connected 5-manifold, M, then M is $M_5 = S^5$ or a connected sum of copies of $S^2 \times S^3$. For T^4 -actions on simply connected 6-manifolds, M, we show that M is $M_6 = S^3 \times$ S^3 or M is a connected sum of copies of $S^2 \times S^4$ and $S^3 \times S^3$.

1. Preliminaries. We shall use standard terminology and notation throughout (e.g. see [2]). Unless otherwise stated, all mani-