THE MAXIMAL RIGHT QUOTIENT SEMIGROUP OF A STRONG SEMILATTICE OF SEMIGROUPS

ANTONIO M. LOPEZ, JR.

Let S be a strong semilattice Y of monoids. If S is right nonsingular then Y is nonsingular. The converse is true when S is a sturdy semilattice Y of right cancellative monoids. Should S have trivial multiplication then each monoid of more than one element has as its index an atom of Y. Finally, if S is a right nonsingular strong semilattice Y of principal right ideal Ore monoids with onto linking homomorphisms then Q(S), the maximal right quotient semigroup of S, is a semilattice Q(Y) of groups.

1. Introduction. Let Y be a semilattice and let $\{S_{\alpha}\}_{\alpha \in Y}$ be a collection of pairwise disjoint semigroups. For each pair α , $\beta \in Y$ with $\alpha \geq \beta$, let $\psi_{\alpha,\beta} \colon S_{\alpha} \to S_{\beta}$ be a semigroup homomorphism such that $\psi_{\alpha,\alpha}$ is the identity mapping and if $\alpha > \beta > \gamma$ then $\psi_{\alpha,\gamma} = \psi_{\beta,\gamma}\psi_{\alpha,\beta}$. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ with multiplication

$$a*b = \psi_{\alpha,\alpha\beta}(a)\psi_{\beta,\alpha\beta}(b)$$

for $a \in S_{\alpha}$ and $b \in S_{\beta}$. The semigroup S is called a strong semilattice Y of semigroups S_{α} . If, in addition, each $\psi_{\alpha,\beta}$ is one-to-one then S is called a sturdy semilattice of semigroups. The basic terminology in use throughout this paper can be found in [1], [7], and [9]. Note that a semilattice of groups [1, p. 128] is a strong semilattice of semigroups. In [6], McMorris showed that if M is a semilattice X of groups G_{δ} , then Q(M), the maximal right quotient semigroup of M, is also a semilattice of groups. Hinkle [2] constructed Q(M) and showed that its indexing semilattice is Q(X).

Let S be a semigroup with 0. A right ideal D of S is dense if for each $s_1, s_2, s \in S$ with $s_1 \neq s_2$, there exists an element $d \in D$ such that $s_1d \neq s_2d$ and $sd \in D$. A right ideal L of S is \cap -large if for each nonzero right ideal R of S, $R \cap L \neq \{0\}$. It is easy to see that dense implies \cap -large. If each \cap -large right ideal of S is also dense then S is said to be right nonsingular. If a semigroup is commutative or each one-sided ideal is two-sided then we will use the term nonsingular. Let T be a right S-system with 0[5] then the singular congruence ψ_T on T is a right congruence defined for $a, b \in T$ by $a\psi_T b$ if and only if as = bs for all s in an \cap -large right ideal of S. McMorris [8] showed that $\psi_S = i_S$, the identity congruence on S, if and only if S is right nonsingular.

Recently it has been shown [4], [5] that if S is a commutative