STABLE ISOMORPHISM OF HEREDITARY SUBALGEBRAS OF C*-ALGEBRAS

LAWRENCE G. BROWN

The main theorem is that if B is a hereditary C^* -subalgebra of A which is not contained in any proper closed two-sided ideal, then under a suitable separability hypothesis $A \otimes \mathscr{K}$ is isomorphic to $B \otimes \mathscr{K}$, where \mathscr{K} is the C*-algebra of compact operators on a separable infinite-dimensional Hilbert space. In the special case where $A = C \otimes \mathscr{K}$ and B = pAp for some projection p in the double centralizer algebra, M(A), of A such that p commutes with $C \otimes 1 \subset M(A)$, the theorem follows from a result of Dixmier and Douady [12]. In fact p must be defined by a continuous mapping from the spectrum \hat{C} of C to the strong grassmanian. Thus p defines a continuous field of Hlibert spaces on \hat{C} and [12] implies that the countable direct sum of this field with itself is trivial. Our proof amounts to an abstraction of [12]. The theorem also leads to an abstraction and generalization of some results of Douglas, Fillmore, and us on extensions of C*-algebras ([6, \S 3]). The final section of the paper contains a generalization of the Dauns-Hofmann theorem which is needed to justify some of our remarks.

1. Preliminaries. If B is a C^{*}-subalgebra of A, B is called *hereditary* if $a \in A$, $b \in B$, $0 \leq a \leq b$ imply $a \in B$. B is full if it is not contained in any proper closed two-sided ideal of A.

We will be particularly concerned with hereditary subalgebras which are related to the double centralizer algebra, M(A), of A. An element of M(A) is a pair x = (S, T), where S and T are linear operators on A such that $a \cdot S(b) = T(a) \cdot b$ for all $a, b \in A$. M(A) is the universal C^* -algebra containing A as a two-sided ideal. S and T are the restrictions to A of the left and right multiplications by x. The strict topology of M(A) is the weakest topology in which the maps $x \to xa$ and $a \to ax$ are continuous for each $a \in A$, where A has the norm topology. Any nondegenerate representation, π , of A extends uniquely to a representation, $\tilde{\pi}$, of M(A) on the same Hilbert space. For further details on M(A) the reader is referred to [8] and [3].

If p is a projection in M(A), pAp is a hereditary subalgebra of A which will be called a *corner*.

LEMMA 1.1. If p is a projection in M(A), the following are equivalent:

1. For any nondegenerate representation, π , of A, $\tilde{\pi}(p) \neq 0$.