A CHARACTERIZATION OF PSp(2m, q) AND $P\Omega(2m+1, q)$ AS RANK 3 PERMUTATION GROUPS

ARTHUR YANUSHKA

This paper characterizes the projective symplectic groups PSp(2m, q) and the projective orthogonal groups $P\Omega(2m+1, q)$ as the only transitive rank 3 permutation groups G of a set X for which the pointwise stabilizer of G has orbit lengths 1, $q(q^{2m-2}-1)/(q-1)$ and q^{2m-1} under a relatively weak hypothesis about the pointwise stabilizer of a certain subset of X. A precise statement is

THEOREM. Let G be a transitive rank 3 group of permutations of a set X such that the orbit lengths for the pointwise stabilizer are 1, $q(q^{r-2}-1)/(q-1)$ and q^{r-1} for integers q>1 and r>4. Let x^{\perp} denote the union of the orbits of length 1 and $q(q^{r-2}-1)/(q-1)$. Let R(xy) denote $\cap \{z^{\perp}: x, y \in z^{\perp}\}$. Assume $R(xy) \neq \{x, y\}$ for $y \in x^{\perp} - \{x\}$. Assume that the pointwise stabilizer of $x^{\perp} \cap y^{\perp}$ for $y \notin x^{\perp}$ does not fix R(xy) pointwise. Then r is even, q is a prime power and G is isomorphic to either a group of symplectic collineations of projective (r-1) space over GF(q) containing PSp(r, q) or a group of orthogonal collineations of projective r space over GF(q) containing PQ(r+1, q).

1. Introduction. The projective classical groups of symplectic type PSp(2m, q) for $m \ge 2$ are transitive permutation groups of rank 3 when considered as groups of permutations of the absolute points of the corresponding projective space. Indeed the pointwise stabilizer of PSp(2m, q) has 3 orbits of lengths 1, $q(q^{2m-2}-1)/(q-1)$ and q^{2m-1} . In a recent paper [7], the author characterized the symplectic groups PSp(2m, q) for $m \ge 3$ as rank 3 permutation groups.

THEOREM A. Let G be a transitive rank 3 group of permutations of a set X such that G_x , the stabilizer of a point $x \in X$, has orbit lengths 1, $q(q^{r-2}-1)/(q-1)$ and q^{r-1} for integers $q \ge 2$ and $r \ge 5$. Let x^{\perp} denote the union of the G_x -orbits of lengths 1 and $q(q^{r-2}-1)/(q-1)$. Let R(xy) denote $\cap \{z^{\perp}: x, y \in z^{\perp}\}$. Assume $R(xy) \ne \{x, y\}$. Assume that the pointwise stabilizer of x^{\perp} is transitive on the points unequal to x of R(xy) for $y \notin x^{\perp}$. Then r is even, q is a prime power and G is isomorphic to a group of symplectic collineations of projective (r-1) space over the field of q elements, which contains PSp(r, q).