$W_s(T)$ IS CONVEX

J. KYLE

Stampfli introduced a generalization of the numerical range for any bounded linear operator *T* **on a Hubert space** \mathcal{H} . This is denoted by $W_{\delta}(T)$ and is defined by

 $W_{\delta}(T) =$ closure $\langle \langle Tx, x \rangle : ||x|| = 1$ and $||Tx|| \geq \delta$.

Stampfli asked whether $W_{\delta}(T)$ is convex. In this short note **we provide an affirmative answer to this question.**

 $\mathscr{L}(X)$ will denote the set of bounded linear operators on the Hilbert space \mathcal{H} .

LEMMA 1. Suppose S and A belong to $\mathscr{L}(\mathscr{H})$, and that $S = S^*$. *Then*

 $S(A, \delta) = \{x \in \mathcal{H} : ||x|| = 1 \text{ and } ||Ax|| \geq \delta \text{ and } \langle Sx, x \rangle = 0\}$

is path connected.

Proof. Suppose *x* and *y* belong to *S(A, δ).* We may assume that *x* and *y* are linearly independent. (If not, they both lie on an arc of

$$
\{e^{i\theta}x\colon 0\leq\theta\leq 2\pi\}
$$

which lies in $S(A, \delta)$ if x does.)

Choose θ in *R* such that $e^{i\theta} \langle Sx, y \rangle$ is purely imaginary and let $a = e^{i\theta}x$.

Choose *n* such that $(-1)^n$ $Re \langle (A^*A - \partial^2 I)a, y \rangle$ is positive and let $b = (-1)^n y$. Then a and b may be joined by a path in $S(A, \delta)$ to x and y respectively. Thus we need only find a path connecting a to *b*. Let $y(t) = ta + (1-t)b$ and let $x(t) = ||y(t)||^{-1}y(t)$. Then $\langle Sx(t), x(t) \rangle = 0 \Leftrightarrow \langle Sy(t), y(t) \rangle = 0$ and

$$
\begin{aligned} \langle Sy(t),\,y(t)\rangle&=t^2\langle Sa,\,a\rangle+(1-t)^2\langle Sb,\,b\rangle\\ &+2\boldsymbol{R}et(1-t)\langle Sa,\,b\rangle\\ &=2(-1)^n t(1-t)\boldsymbol{R}e^{i\theta}\langle Sx,\,y\rangle\\ &=\,\boldsymbol{0}\,\, .\end{aligned}
$$

Also

$$
\begin{aligned} \|Ay(t)\|^2 &= \left\langle A^*Ay(t),\,y(t)\right\rangle \\ &= t^2\, \|Aa\|^2 + (1-t)^2\|Ab\|^2 \\ &\quad + 2t(1-t)\boldsymbol{R}e\langle A^*Aa,\,b\rangle \end{aligned}
$$