ON THE COMPACTNESS OF THE HYPERSPACE OF FACES

H. B. REITER AND N. M. STAVRAKAS

Let $X \subset \mathbb{R}^d$, d > 2, be compact and convex. It is shown that the space of proper faces (poonems) of X is compact if and only if the space of k-exposed (extreme) points of X is compact, $0 \leq k \leq d-2$.

By a *flat* we mean a translate of a subspace of R^d and by a hyperplane, a flat of dimension d-1. If X is a compact convex subset of R^d the symbols dim (X), rel int (X), and rel bd (X) denote respectively, the dimension of the flat generated by X, the interior, and the boundary of X with respect to the flat X generates. A hyperplane H is called a supporting hyperplane of X if $H \cap X \neq \emptyset$ and $H \cap \operatorname{relint}(X) = \emptyset$. A set A is called a face of X if A = X, $A = \emptyset$ or if there exists a supporting hyperplane H of X such that $A = H \cap X$. The set of proper faces (those not X or \emptyset) is denoted by $\mathcal{F}(X)$. A set B is called a *poonem* of X if there exists sets B_0, B_1, \dots, B_m such that $B_m = X$ and $B_{i-1} \in \mathscr{F}(B_i)$ for $i = 1, \dots, m$. The set of poonems of X is denoted by $\mathscr{P}(X)$. A point x in X is called a k-exposed [k-extreme] point if for some $j \leq k$, x belongs to a *j*-dimensional face [j-dimensional poonem] of X. The symbols $\exp_k(X)$ and $\exp_k(X)$ denote the set of k-exposed and k-extreme points of X respectively. A point x of X is called an *exposed point* of X if $\{x\} \in \mathcal{F}(X)$ and x is called an *extreme point* if whenever $x \in [a, b] \subset X$, we have x = a or x = b, where [a, b] denotes the closed line segment from a to b. The symbols ext(X) and exp(X) denote the extreme points and exposed points of X, respectively. Note that $\exp(X) = \exp_0(X)$ and $\exp(X) = \exp_0(X)$. Also, let q denote the Hausdorff metric. Finally, if $D \subset R^d$, the symbols cl(D) and conv(D) denote the closure of D and the convex hull of D respectively.

We require the following results

PROPOSITION. Let X, A and B be nonempty compact convex subsets of R^d , $d \ge 2$, with $A \subset X$ and $B \subset X$.

(a) If $A, B \in F(X)$ (P(X)) and $A \cap B \neq \emptyset$, then $A \cap B \in F(X)$ (P(X)).

- (b) If $A \in F(X)$ (P(X)) with relint $(B) \cap A \neq \emptyset$ then $B \subset A$.
- (c) If $A \in F(X)$ (P(X)) and $A \subseteq B \subset X$ then $A \in F(B)$ (P(B)).
- (d) $\operatorname{ext}_{k}(X) \subset \operatorname{cl}(\operatorname{exp}_{k}(X)).$
- (e) If $A \in F(X)$ then $\operatorname{ext}_{k}(A) \subset \operatorname{ext}_{k}(X)$.