SQUARE INTEGRABLE REPRESENTATIONS AND THE FOURIER ALGEBRA OF A UNIMODULAR GROUP

GIANCARLO MAUCERI

Let G be a unimodular group, and let λ_d be the subrepresentation of the left regular representation λ , which is the sum of the square integrable representations. The purpose of this paper is to study the representation λ_d with special emphasis on the closed subspace $A_d(G)$ of the Fourier algebra A(G) of the group which is generated by the coefficients of λ_d . In the last part of the paper we study in detail a particular noncompact group for which $\lambda = \lambda_d$.

We denote, as in [4], by A(G) the algebra of the coefficients of λ , that is the algebra of continuous functions on G of the type $(\lambda(x)f,g)$, with $f,g\in L^2(G)$. The first section contains results of a general nature: we show that $A_d(G)$ is the dual space of a C^* -algebra contained in VN(G), the von Neumann algebra generated by the operators $\lambda(x)$, $x\in G$, and that its unit ball is the weak closure of the extreme points of the unit ball of A(G). We also show that $A_d(G) \subset L^2(G)$ if and only if the formal degrees of the square integrable representations of G are bounded away from zero.

In the last section we make a closer study of an example due to J. Fell of a noncompact group G for which $A_d(G) = A(G)$. We show that the traces of the square integrable representations of this group are bounded measures and we construct a kind of Dirichlet kernels, which also turn out to be bounded measures.

We prove that summation with respect to these kernels converges in $L^p(G)$ for $1 , but not for <math>L^1(G)$.

We conclude the paper with some remarks on the Wiener-Pitt phenomenon for bounded measures on this group.

1. We refer the reader to [4] for the definitions and the properties of the Fourier algebra A(G) and the Fourier-Stieltjes algebra B(G) of a locally compact group G, and to [3] for the basic facts about C^* -algebras, von Neumann algebras and square integrable representations of unimodular groups. Throughout the paper "group" will always mean "locally compact unimodular group" and "representation" will mean "unitary continuous representation."

Following Arsac [1], given a representation π of G on a Hilbert space H_{π} , we denote by A_{π} the closed subspace of B(G) spanned by the coefficients of π , i.e., the functions $(\pi(x)\mu|\nu)$, $x \in G$, μ , $\nu \in H_{\pi}$. Let λ_d be the subrepresentation of the left regular representation of G