THE K-THEORY OF AN EQUICHARACTERISTIC DISCRETE VALUATION RING INJECTS INTO THE K-THEORY OF ITS FIELD OF QUOTIENTS

C. C. SHERMAN

Let A be an equicharacteristic discrete valuation ring with residue class field F and field of quotients K. The purpose of this note to prove that the transfer map $K_n(F) \rightarrow K_n(A)$ is zero $(n \ge 0)$.

By virtue of Quillen's localization sequence for A, this is equivalent to the statement that the map $K_n(A) \to K_n(K)$ is injective. This result has been conjectured by Gersten and proved by him in the case in which F is a finite separable extension of a field contained in A. We establish the general result by using a limit technique to reduce to this special case.

LEMMA. Let A be a discrete valuation ring with maximal ideal m and residue class field A/m = F. Suppose that A contains a field L; suppose further that F' is a finite separable extension of L satisfying $L \subset F' \subset F$. Then there exists a subring A' of A such that:

- (a) A' is a discrete valuation ring containing L;
- (b) $A' \subset A$ is local and flat;
- (c) if we denote by m' the maximal ideal of A, then m = m'A;

(d) the image of A' in F is F'; (since $m \cap A = m'$, this implies that we may identify the residue class field of A' with F').

Proof. Let m be generated by the parameter π . Consider first the case in which A contains a field mapping isomorphically onto F''; let us denote this field also by F'. π is easily seen to be algebraically independent of F', so the subring $F'[\pi]$ of A is isomorphic to a polynomial ring in one variable over F', and π generates a maximal ideal m'. Then $A' = F'[\pi]_m$ is a discrete valuation ring. Furthermore, elements of the complement of m' in $F'[\pi]$ are units in A, so $A' \subset A$. A is flat over A' since A' is Dedekind and A is torsion-free as an A'-module; the other conditions are clear.

Now suppose that A does not contain a field mapping isomorphically onto F'. F' is a simple extension of L, say $F' = L(\overline{\alpha})$; let $f \in L[X]$ be the minimal polynomial of $\overline{\alpha}$. Lift $\overline{\alpha}$ to $\alpha \in A$. If we denote by v the valuation on K, then $v(f(\alpha)) > 0$ since $f(\overline{\alpha}) = 0$