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EQUATIONAL DEFINABILITY OF ADDITION
IN CERTAIN RINGS

HAL G. MOORE AND ADIL YAQUB

Boolean rings and Boolean algebras, though historically
and conceptually different, were shown by Stone to be equa-
tion ally interdefinable. Indeed, in a Boolean ring, addition
can be defined in terms of the ring multiplication and the
successor operation (Boolean complementation) aΓ = 1 +
x(=l — x). In this paper, it is shown that this type of equa-
tional definability of addition also holds in a much wider
class of rings, namely periodic rings (ring satisfying xm = xn,
m Φ n) in which the idempotent elements are "well behaved."
More generally, the following theorem is proved:

Suppose R is a ring with unity 1, not necessarily com-
mutative. Suppose further that R satisfies the identity xn =
xn+1f{x) where n is a fixed positive integer and f(x) is a fixed
polynomial with integer coefficients. If, further, the idem-
potent elements of R commute with each other, then addi-
tion in R is equationally definable in terms of multiplication
in R and the successor operation x~ = 1 + x.

Some new classes of rings to which this theorem applies
are exhibited.

1* The periodic case* In this section, we shall consider a pe-

riodic ring R with unity 1 in which the idempotent elements com-

mute with each other, and will give a direct proof of the equational

definability of the " + " of R in terms of "X" and the successor

operation αΓ. This direct proof avoids the axiom of choice. We

begin with a formal definition of a periodic ring.

DEFINITION 1. A ring R is called periodic if there exist fixed

integers m and n with m > n ^ 1 such that for all x in R, xn = xm.

LEMMA 1. Let R be a periodic ring with unity 1. Then (i)

For each x in R, χ^m~n)n is idempotent. (ii) x is nilpotent if, and

only if xn = 0.

Proof, (i) It can be shown by induction that the identity xn = xm

(m > n ^ 1) implies that for all positive integers r

( 1 ) xn = ίc +r(a? - - ι ) r .

In particular xn = x%%{xn"%"1)%. Let e = (xm~n)n. It is readily verified

that β2 = β, which proves (i). Part (ii) follows at once from equa-

tion (1).
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