EQUATIONAL DEFINABILITY OF ADDITION IN CERTAIN RINGS

HAL G. MOORE AND ADIL YAQUB

Boolean rings and Boolean algebras, though historically and conceptually different, were shown by Stone to be equationally interdefinable. Indeed, in a Boolean ring, addition can be defined in terms of the ring multiplication and the successor operation (Boolean complementation) $x^{-} = 1 + x(=1-x)$. In this paper, it is shown that this type of equational definability of addition also holds in a much wider class of rings, namely periodic rings (ring satisfying $x^m = x^n$, $m \neq n$) in which the idempotent elements are "well behaved." More generally, the following theorem is proved:

Suppose R is a ring with unity 1, not necessarily commutative. Suppose further that R satisfies the identity $x^n = x^{n+1}f(x)$ where n is a fixed positive integer and f(x) is a fixed polynomial with integer coefficients. If, further, the idempotent elements of R commute with each other, then addition in R is equationally definable in terms of multiplication in R and the successor operation $x^{2} = 1 + x$.

Some new classes of rings to which this theorem applies are exhibited.

1. The periodic case. In this section, we shall consider a periodic ring R with unity 1 in which the idempotent elements commute with each other, and will give a *direct* proof of the equational definability of the "+" of R in terms of " \times " and the successor operation $x^{\hat{}}$. This direct proof avoids the axiom of choice. We begin with a formal definition of a *periodic* ring.

DEFINITION 1. A ring R is called *periodic* if there exist fixed integers m and n with $m > n \ge 1$ such that for all x in R, $x^n = x^m$.

LEMMA 1. Let R be a periodic ring with unity 1. Then (i) For each x in R, $x^{(m-n)n}$ is idempotent. (ii) x is nilpotent if, and only if $x^n = 0$.

Proof. (i) It can be shown by induction that the identity $x^n = x^m$ $(m > n \ge 1)$ implies that for all positive integers r

(1)
$$x^n = x^{n+r}(x^{m-n-1})^r$$
.

In particular $x^n = x^{2n}(x^{m-n-1})^n$. Let $e = (x^{m-n})^n$. It is readily verified that $e^2 = e$, which proves (i). Part (ii) follows at once from equation (1).