HEREDITARY CROSSED PRODUCT ORDERS

H. MERKLEN

In this paper one deals with crossed product orders Λ of the following form: Let \mathcal{R} be a Dedekind domain with quotient field $\mathcal F$ and $\mathcal E$ a semisimple, commutative, algebra of finite dimension over \mathcal{T} . Let \mathcal{G} be a finite subgroup of the group of automorphisms of & whose fixed subalgebra is \mathscr{F} , and let Λ_0 be an \mathscr{R} -order in \mathscr{C} , which is \mathscr{G} -stable. Then, if [i] is an element of the second cohomology group $H^2(\mathscr{G}, U(\Lambda_0))$, our order is $\Lambda = \Delta(\mathfrak{f}, \Lambda_0, \mathscr{G})$. One is interested in the set of all maximal orders in $\mathcal{A} = \Delta(\mathfrak{f}, \mathcal{C}, \mathcal{G})$ which contain Λ and also in all hereditary orders in \mathscr{A} which contain Λ . In particular, one is interested in knowing sufficient conditions for Λ itself to be hereditary. This last question is answered by Theorem 1, and the other, more general question, is succesively reduced to the classical complete case (i.e., when \mathscr{R} is a local complete Dedekind domain and \mathscr{C} is a Galois field extension of \mathcal{F} with group \mathcal{G}), to the totally ramified case (i.e., when, furthermore, \mathcal{C}/\mathcal{F} is totally ramified) and, finally, to the wildly ramified case.

1. Introduction. In general, we use in this paper the terminology of [3]. With \mathscr{R} we denote a Dedekind domain whose field of quotients is \mathscr{F} . \mathscr{A} will be a separable \mathscr{F} -algebra and \mathscr{C} a finite dimensional, semisimple, commutative subalgebra of \mathscr{A} . We denote with \mathscr{G} a finite subgroup of the group of automorphisms of \mathscr{C} .

Let \mathscr{B} be a commutative ring with identity and \mathscr{G} a finite group of authomorphisms of \mathscr{B} . Then the group of units of $\mathscr{B}, U(\mathscr{B})$, is a *G*-module. Let \mathfrak{f} be a factor system: $[\mathfrak{f}] \in H^2(\mathscr{G}, U(\mathscr{B}))$. Then we define the ring $\Delta(\mathfrak{f}, \mathscr{B}, \mathscr{G})$ as a free \mathscr{B} -module with basis $\{\mathfrak{t}_{\sigma}\}(\sigma \in \mathscr{G})$, for which a multiplication rule is given by means of:

$$(\mathfrak{b}\mathfrak{t}_{\sigma})(\mathfrak{c}\mathfrak{t}_{\tau}) = \mathfrak{b}\mathfrak{c}^{\sigma}\mathfrak{f}(\sigma, \tau)\mathfrak{t}_{\sigma\tau} \quad (\mathfrak{b}, \mathfrak{c} \in \mathscr{B}; \sigma, \tau \in \mathscr{G})$$

and extended by additivity.

DEFINITION 1. Given \mathscr{C} , a finite dimensional, commutative, semisimple \mathscr{F} -algebra, and a finite subgroup \mathscr{G} of the automorphisms of \mathscr{C} such that the fixed subalgebra of \mathscr{C} under the action of \mathscr{G} is $\mathscr{F}: \mathscr{C}^{\mathscr{G}} = \mathscr{F}$, we say that \mathscr{A} is a crossed product of \mathscr{G} over \mathscr{C} when \mathscr{A} is isomorphic to the \mathscr{F} -algebra $\varDelta(\mathfrak{f}, \mathscr{C}, \mathscr{G})$, for some factor system \mathfrak{f} corresponding to an element of $H^2(\mathscr{G}, U(\mathscr{C}))$.

DEFINITION 2. We say that the \mathscr{R} -order Λ is a crossed product of \mathscr{G} over Λ_0 when: Λ_0 is an \mathscr{R} -order in \mathscr{C} , when the fixed subalgebra