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COHERENT POLYNOMIAL RINGS OVER
REGULAR RINGS OF FINITE INDEX

ANDREW B. CARSON

It is shown that polynomial rings in finitely or infinitely
many central indeterminates, over a regular ring of finite
index, are right and left coherent.

In this paper all rings have unity and all ring homomorphisms
preserve the unity.

DEFINITION 1. A ring R is:
( i ) Regular, if it satisfies the sentence

(Vr)(ls)[rsr = r]

(ii) Of index n, where n ^ 1 is an integer, if for all m ̂  n,
it satisfies the sentence

(Vr)[rw = 0 > rn = 0]

(iii) Of finite index if it is of index n, for some integer n ^ 1.

DEFINITION 2. A ring R is left coherent if:
( i ) U Π V is a finitely generated left ideal in R, whenever U

and V are finitely generated left ideals in R, and
(ii) For each reϋJ, the left annihilator of r in R is finitely

generated, as a left ideal in R.
Right coherence for R is similarly defined.

DEFINITION 3. Let / be an element of and I a finite subset of
a polynomial ring T\Xlf •••, Xg].
Then:

( i ) deg (/) is the total degree of /,
(ii) deg (I) = Sup {deg (/): fe /}, and
(iii) (I) denotes the left ideal generated by /.
It is known (cf. [3, Theorem 2.2]) that a ring is left coherent

iff each of its finitely generated left ideals is finitely presented.
Thus, for certain homological applications, the left coherent rings
seem to be a suitable generalization of the left Noetherian rings.
In view of the Hubert basis theorem (which states that T[X] is left
Noetherian if T is), this suggests the following conjecture: if R is
a left coherent ring, then R[X] is too. Soublin, in [11], disproved
this conjecture, even when R is commutative. However he showed
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