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SUPER TRIANGULATIONS

R. H. BING AND MICHAEL STARBIRD

This paper concerns itself with continuous families of
linear embeddings of triangulated complexes into E2. In [2]
Cairns showed that if / and g are two linear embeddings of
a triangulated complex (C, T) into E2 so that there is an
orientation preserving homeomorphism k of E2 with kof=g,
then there is a continuous family of linear embeddings ht:
(C, T) -> Ez(t e [[0, 1]) so that h0 = / and h, = g. In this paper
we prove various relative versions of this result when C is
an arc, a 0-curve, or a disk.

Introduction* To appreciate where the results in this paper fit
into the literature, it is useful to be aware of the following ex-
amples which were described in [1, Example 4.1].

EXAMPLE 1. This example is a triangulated 1-complex (C, S)
linearly embedded in E2 consisting of a simple closed curve J with
two disjoint spanning arcs in its interior. The complex C is homeo-
morphic to φ. There is a homeomorphism g:E2-*E2 fixed on J such
that / = g\C is linear with respect to S but there is no linear isotopy
ht: (C, S) -> E\t 6 [0,1]) with h0 = id and h, = / which keeps J fixed.

EXAMPLE 2. Example 1 can be modified by incorporating (C, S)
into the 1-skeleton of a triangulated disk (P, T) with boundary J to
produce an example of a disk with properties similar to those of
(C, S). Namely, the triangulated disk (P, T) is linearly embedded in
E2 and admits a linear homoemorphism k fixed on BdP for which
there is no linear isotopy ht:(P, T) —> E\t e [0, 1]) with h0 — id and
hi — k which leaves the boundary fixed throughout.

It is known that no such example can be found where P is convex
[1, Corollary 4.4] nor could P be star-like if T has no spanning edge
[1, Theorem 4.1].

In this paper it is shown (Theorem 2.4) that no 1-complex homeo-
morphic to a #-eurve can have the properties of Example 1. Then
in Theorem 4.2 it is proved that Example 2 can not retain its proper-
ties under all subdivisions. In fact each triangulation T of a disk P
has a subdivision T which is a super triangulation of P. A super
triangulation T of a disk P is one which is as flexible as possible.
Namely, any linear embedding of Bd P into E2 extends to a linear
embedding of (P, Tf) and for any two linear homeomorphisms /, g
of (P, T) into E2 with /1 Bd P = g \ Bd P, there is a linear isotopy
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