TANGENT FRAME FIELDS ON SPIN MANIFOLDS

DUANE RANDALL

In this note we prove the following theorems.

THEOREM A. Let M^n be a spin manifold with $n \equiv 7 \mod 8$ and n > 7. Then M admits at least 8 nonhomotopic tangent 4-frame fields.

THEOREM B. Let M^n be a spin manifold with $n \equiv 3 \mod 8$ and n > 3. Suppose that $w_{n-4}M = 0$ and $w_4M \cdot w_{n-5}M = 0$. Then M^n admits a tangent 4-frame field iff

$$w_{n-3}M=0$$
 and $\chi_2M=0$.

1. Introduction. Here M^n denotes a closed connected smooth manifold of dimension n. A tangent k-frame field on M^n is an ordered set of k linearly independent vector fields on M^n . The classical theorem of Hopf states that M^n possesses a tangent 1-frame field iff the Euler characteristic $\chi M = 0$. A table of necessary and sufficient conditions for tangent 2-frame fields on orientable manifolds appears in [10] while conditions for tangent 3-frame fields are tabulated in and [3]. In particular, Atiyah and Dupont prove in [1] that any orientable manifold M^n with $n \equiv 3 \mod 4$ admits a tangent 3-frame field. This result is best possible since neither the sphere S^{8i+3} nor $S^3 \times CP^{4i+2}$ admits a tangent 4-frame field.

Recall that an orientable manifold M^n is called a spin manifold if the Stiefel-Whitney class w_2M is trivial. The mod 2 semicharacteristic γ_2M^n is defined if n = 2s + 1 by

$$\chi_{\scriptscriptstyle 2} M = \left(\sum\limits_{i=0}^s \dim \, H_i(M;\,Z/2)
ight) \, ext{mod} \, 2$$
 .

Let σM denote the signature of M^n whenever *n* is divisible by 4. Finally δ represents the Bockstein-coboundary operator associated to the exact coefficient sequence $Z \to Z \to Z/2$.

Theorem A is a best possible result for $n \equiv 7 \mod 16$. In [8, p. 690] Szczarba constructed certain spin manifolds M^n with $n \equiv 3 \mod 4$ as the quotient spaces of free and differentiable actions of generalized quarternion groups on S^n . The span of these spherical space forms M^n with $n \equiv 7 \mod 16$ and n > 7 is precisely 4 by Theorem 1.1 of [2].

An immediate consequence of Theorem A and the result of Thurston given by [14, Corollary 1] is the following.

COROLLARY. Let M^n be a spin manifold with $n \equiv 7 \mod 8$ and