ON THE EXPANSION IN JOINT GENERALIZED EIGENVECTORS

Klaus Gero Kalb

Abstract

Let \mathscr{A} be a family commuting selfadjoint of (normal) operators in a complex (not necessarily separable) Hilbert space H. A natural triplet $\phi \subset H \subset \phi^{\prime}$ is described, such that (1) \mathscr{A} possesses a complete system of joint generalized eigenvectors in ϕ^{\prime}; (2) the joint generalized point spectrum of \mathscr{A} essentially coincides with the joint spectrum of \mathscr{A}; (3) the generalized point spectra, generalized spectra and spectra essentially coincide for all $A \in \mathscr{A}$; (4) the simultaneous diagonalization of \mathscr{A} in H by means of its spectral measure extends to ϕ^{\prime}. Also the multiplicity of the joint generalized eigenvectors of \mathscr{A} is discussed.

Let ϕ be a locally convex space, which is embedded densely and continiously into H, such that $A \phi \subset \phi$ and $\dot{A}=A \mid \phi \in \mathscr{L}(\phi)$ for all $A \in$ \mathscr{A}. Consider the triplet $\phi \subset H \subset \phi^{\prime}$. A joint generalized eigenvector of \mathscr{A} with respect to the joint generalized eigenvalue $\left(\lambda_{A}\right)_{A \in \mathscr{A}} \in$ $\Pi_{A \in \mathscr{M}} C$ is a continuous linear form $x^{\prime} \in \phi^{\prime}$ such that

$$
\begin{equation*}
x^{\prime} \neq 0 \quad \text { and } \quad \dot{A}^{\prime} x^{\prime}=\lambda_{A} \cdot x^{\prime} \quad \text { for all } A \in \mathscr{A} . \tag{1.1}
\end{equation*}
$$

The system $\mathfrak{F r}$ of all joint generalized eigenvectors of \mathscr{A} is called complete, if $\left\langle\rho, e^{\prime}\right\rangle=0$ for all $e^{\prime} \in \mathscr{F}$ implies $\varphi=0$ ($\varphi \in \phi$). For H separable there is a number of conditions on ϕ, under which \mathfrak{F} is complete (cf. e.g., [14], [3]), and there also are effective constructions of ϕ with respect to a given family \mathscr{A} (cf. [13], [14] for \mathscr{A} countable; [15]). The fact that especially in the case of a single normal operator there generally exist many more joint generalized eigenvalues and eigennvectors than necessary (and reasonable in physical applications) has led to recent investigations ([15], [16]; [1]; [2]; [5]; [8], [9]). Let $\sigma_{P}\left(\mathscr{A}^{\prime}\right)$ be the joint generalized point spectrum of \mathscr{A} (i.e., the set of all joint generalized eigenvalues of $\mathscr{A})$, let $\sigma(\mathscr{A})$ be the joint spectrum of \mathscr{A} as defined in Gelfand theory (cf. §2). Let \mathscr{B} be the (commutative) C^{*}-algebra generated by \mathscr{A} and 1. In the present work we propose the construction of a natural triplet $\phi \subset$ $H \subset \phi^{\prime}$, by which the following is achieved:
(a) $\sigma_{P}\left(\dot{\mathscr{A}}^{\prime}\right) \subset \overline{\sigma_{P}\left(\mathscr{A}^{\prime}\right)}=\sigma(\mathscr{A})$;
(b) $\sigma_{P}\left(\dot{B}^{\prime}\right) \subset \overline{\sigma_{P}\left(\dot{B}^{\prime}\right)}=\sigma\left(\dot{B}^{\prime}\right)=\sigma(B)$ for all $B \in \mathscr{B}$;
(c) the simultaneous diagonalization of \mathscr{B} by means of its spectral measure can be transferred to $\dot{\mathscr{B}}^{\prime}$.

