ON THE EXPANSION IN JOINT GENERALIZED EIGENVECTORS

KLAUS GERO KALB

Let \mathscr{S} be a family commuting selfadjoint of (normal) operators in a complex (not necessarily separable) Hilbert space H. A natural triplet $\phi \subset H \subset \phi'$ is described, such that (1) \mathscr{S} possesses a complete system of joint generalized eigenvectors in ϕ' ; (2) the joint generalized point spectrum of \mathscr{S} essentially coincides with the joint spectrum of \mathscr{S} ; (3) the generalized point spectra, generalized spectra and spectra essentially coincide for all $A \in \mathscr{S}$; (4) the simultaneous diagonalization of \mathscr{S} in H by means of its spectral measure extends to ϕ' . Also the multiplicity of the joint generalized eigenvectors of \mathscr{S} is discussed.

Let ϕ be a locally convex space, which is embedded densely and continiously into H, such that $A\phi \subset \phi$ and $\dot{A} = A | \phi \in \mathscr{L}(\phi)$ for all $A \in \mathscr{N}$. Consider the triplet $\phi \subset H \subset \phi'$. A joint generalized eigenvector of \mathscr{N} with respect to the joint generalized eigenvalue $(\lambda_A)_{A \in \mathscr{N}} \in \prod_{A \in \mathscr{N}} C$ is a continuous linear form $x' \in \phi'$ such that

(1.1)
$$x' \neq 0$$
 and $\dot{A'}x' = \lambda_A \cdot x'$ for all $A \in \mathscr{M}$.

The system \mathfrak{G} of all joint generalized eigenvectors of \mathscr{A} is called complete, if $\langle \varphi, e' \rangle = 0$ for all $e' \in \mathfrak{G}$ implies $\varphi = 0$ ($\varphi \in \phi$). For H separable there is a number of conditions on ϕ , under which \mathfrak{G} is complete (cf. e.g., [14], [3]), and there also are effective constructions of ϕ with respect to a given family \mathscr{A} (cf. [13], [14] for \mathscr{A} countable: [15]). The fact that especially in the case of a single normal operator there generally exist many more joint generalized eigenvalues and eigennvectors than necessary (and reasonable in physical applications) has led to recent investigations ([15], [16]; [1]; [2]; [5]; [8], [9]). Let $\sigma_P(\mathscr{A}')$ be the joint generalized point spectrum of \mathscr{A} (i.e., the set of all joint generalized eigenvalues of \mathcal{A}), let $\sigma(\mathcal{A})$ be the joint spectrum of \mathcal{M} as defined in Gelfand theory (cf. § 2). Let \mathcal{B} be the (commutative) C^* -algebra generated by \mathcal{A} and 1. In the present work we propose the construction of a natural triplet $\phi \subset$ $H \subset \phi'$, by which the following is achieved:

- (a) $\sigma_P(\mathscr{A}') \subset \overline{\sigma_P(\mathscr{A}')} = \sigma(\mathscr{A});$
- (b) $\sigma_P(\dot{B}') \subset \overline{\sigma_P(\dot{B}')} = \sigma(\dot{B}') = \sigma(B)$ for all $B \in \mathscr{B}$;

(c) the simultaneous diagonalization of \mathscr{B} by means of its spectral measure can be transferred to $\dot{\mathscr{B}}'$.