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RANDOM FIXED POINT THEOREMS
FOR MULTIVALUED MAPPINGS

Heinz W. ENGL

We give some random fixed point theorems for random
operators which are defined on subsets of a separable Banach
space and whose values are subsets of the Banach space.
The domains are allowed to be random. One of the results
is a stochastic version of the Bohnenblust-Karlin-Kakutani
fixed point theorem for set-valued maps.

1. Introduction. The Prague school of probabilists in the Fifties
introduced the study of random fixed point theorems (cf. e.g., [10]).
Recently the interest in these questions has been revived, especially
by the review article [3]. Answers to some of the research problems
mentioned there have been given in [5], [6], [7]. In this paper we
will answer the research problem asking for a stochastic version of
the Bohnenblust-Karlin fixed point theorem for set-valued maps ([4],
cf. also [18]), which was proved for finite dimensional spaces by
Kakutani.

A random fixed point theorem for another class of set-valued
maps was recently proved in [13]. A good historic survey about
fixed point theorems for set-valued maps can be found in [9].

2. Definitions and preliminary results., Throughout this paper,
let X be a real separable Banach space, (2, % 1) a o-finite measure
space. We will use the words “stochastic” and “random” inter-
changeably also if ¢ is not a probability measure. By 2* we denote
{AJAS X N A+#¢ N A closed}, by CB(X) = {A/Ac2* A\ A bounded}
and by CC(X) = {A/Ae2* A A convex}.

DEFINITION 1. Let C: 2 — 2* be a set-valued map. We call C
“measurable” iff for all open DS X, {we 2/C(w)ND+#¢}e . (Note
that this is called “weakly measurable” in [12].) We call C “separable”
iff it is measurable and there exists a countable set Z £ X such
that for all we 2, cl (Z N C(w)) = C(w). The “graph of C” is defined
as Gr C = {(w, ) € 2 X X/x e C(w)}.

It can be easily shown that if C is measurable and has closed,
convex, and solid (i.e., nonempty interior) values, then C is separable.
The definition of separability implies that C has closed values.

DEFINITION 2. Let C < X be closed. T:C — 2% is called “upper
semicontinuous (usec)” iff for all xeC, T(x) is compact and for all
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