THE NUMBER OF NONFREE COMPONENTS IN THE DECOMPOSITION OF SYMMETRIC POWERS IN CHARACTERISTIC p

GERT ALMKVIST

If G is the group with p (=prime) elements and k a field of characteristic p let V_1, V_2, \cdots, V_p denote the indecomposable k[G]-modules of k-dimension $1, 2, \cdots, p$ respectively. Let $e_{n,\nu}$ denote the number of nonfree components of the decomposition of the symmetric power $S^{\nu}V_{n+1}$. Then the following symmetry relation is proved

$$e_{n,p-n-\nu-1} = e_{n,\nu}$$
.

As a corollary we find that S^rV_{n+1} has exactly one nonfree component when n+r=p-2 thus solving a problem in a previous paper by R. Fossum and the author. An explicit formula for $e_{n,\nu}$ expressed in numbers of restricted partitions is obtained.

Let G be the group with p elements where p is a prime number. Let k be a field of characteristic p. Then there are p indecomposable k[G]-modules V_1, V_2, \dots, V_p where

$$V_n \cong k[x]/(x-1)^n$$
.

Note that $V_p = k[G]$ is free and $\dim_k V_n = n$.

The symmetric power $S^{\nu}V_{n+1}$ taken over k is again a k[G]-module and can be decomposed into a direct sum of the V_i : s

$$S^{\scriptscriptstyle{
u}} V_{\scriptscriptstyle{n+1}} = igoplus_{\scriptscriptstyle{j=1}}^{\scriptscriptstyle{p}} c_{\scriptscriptstyle{
u},j}(n) \, V_{\scriptscriptstyle{j}}$$

where the integer $c_{\nu,j}(n)$ is the number of times V_j is repeated. Let

$$e_{n,\nu} = \sum_{j=1}^{p-1} c_{\nu,j}(n)$$

be the number of nonfree components in $S^{\nu}V_{n+1}$.

If we write down these numbers in triangular form we get the following pictures where the number in the $(\nu + 1)$ th place in the (n + 1)th row from below is $e_{n,\nu}$.